当前位置:日记网>生活日记>观察日记> 四年级观察日记400字

四年级观察日记400字

时间:2024-06-24 10:27:32 观察日记 我要投稿
  • 相关推荐

【精】四年级观察日记400字

  已到了一天的末尾,这一天里,大家身边一定有一些有趣的见闻吧,是时候抽出时间写写日记了。可是怎样写日记才能出彩呢?下面是小编帮大家整理的四年级观察日记400字,仅供参考,希望能够帮助到大家。

【精】四年级观察日记400字

四年级观察日记400字1

  教学目标

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的`开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

  等都不是代数式.

  3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出代数式7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

四年级观察日记400字2

  [教学目标]

  1. 认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位

  2. 渗透对应关系,提高学生的数感.

  [教学重点与难点]

  重点:平面直角坐标系和点的坐标.

  难点:正确画坐标和找对应点.

  [教学设计]

  [设计说明]

  一.利用已有知识,引入

  1.如图,怎样说明数轴上点A和点B的位置,

  2.根据下图,你能正确说出各个象棋子的'位置吗?

  二.明确概念

  平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

  由数轴的表示引入,到两个数轴和有序数对。

  从学生熟悉的物品入手,引申到平面直角坐标系。

  描述平面直角坐标系特征和画法

  正方向;两个坐标轴的交点为平面直角坐标系的原点。

  点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

  例1 写出图中A、B、C、D点的坐标。

  建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

  你能说出例1中各点在第几象限吗?

  例2 在平面直角坐标系中描出下列各点。

  ()A(3,4);B(-1,2);C(-3,-2);D(2,-2)

  问题1:各象限点的坐标有什么特征?

  练习:教材49页:练习1,2。

  三.深入探索

  教材48页:探索:

  识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

  [巩固练习]

  1. 教材49页习题6.1——第1题

  2. 教材50页——第2,4,5,6。

  [小结]

  1. 平面直角坐标系;

  2. 点的坐标及其表示

  3. 各象限内点的坐标的特征

  4. 坐标的简单应用

  [作业]

  必做题:教科书50页:3题

  (教材51页综合运用7,8,9,10为练习课内容)

  明确点的坐标的表示法

  仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系

  通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征

四年级观察日记400字3

  教学目标:

  1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

  2.通过矩形判定的教学渗 透矛盾可以互相转化的唯物辩证法思想

  教法设计:观察、启发、总结、提高,类比探讨,讨 论分析,启 发式.

  教学重点:矩形的判定.

  教学难点:矩形的 判定及性质的综合应用.

  教具学具准备:教具(一个活动的平行四边形)

  教学步骤:

  一.复习提问:

  1.什么叫做平行四边形?什么叫做矩形?

  2.矩形有哪些性质?

  3.矩形与平行四边形有什么共同之处?有什么不同之处?

  二.引入新课

  设问:1.矩形的'判定.

  2.矩形是有一个角是直角的平行四 边形,在判定一个四边形是不是矩 形 ,首先看这个四边形是不是平行四边 形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这 体现了定义作用的双重性、性质和判定).除此之外,还有其它 几种判定矩形的方法,下面就来研究这 些方法.

  方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)

  矩形判定方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生 一道写出证明过程。)

  归纳矩形判定方法(由学生小 结):

  (1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.

  (3)有三个角是直角的四边形.

  2 .矩形判定方法的实际应用

  除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.

  3.矩形知识的综合应用。(让学生思考,然后师生共同完成)

  例:已知 的对角线 , 相交于

  ,△ 是等边三角形, ,求这个平行

  四边形的面积(图2).

  分析解题思路:(1)先判定 为矩形.(2)求 出 △ 的直角边 的长.(3)计算 .

  三.小结:(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线 相等.判定方法3的两个条件是:①是四边形,②有三个直 角.

  矩形的判定方法有哪些?

  一个角是直角的平行四边形

  对角线相等的平行四边形-是矩形。

  有三个角是直角的四边形

  (2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.

  补充例题

  例1:已知:O是矩形A BCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,AE=BF=CG=DH,

  求证:四边形EFGH为矩形

  分析:利用对角线互相平分且相等的四边形是矩形可以证明

  证明:∵ABCD为矩形

  AC=BD

  AC、BD互相平分于O

  AO=BO=CO=DO

  ∵AE=BF=CG=DH

  EO=FO=GO=HO

  又HF=EG

  EFGH为矩形

  例2:判断

  (1)两条对 角线相等四边形是矩形()

  (2)两条对角线相等且互相平分的四边形是矩形()

  (3)有一个角是 直角的四边形是矩形( )

  (4)在矩形内部没有和四个顶点距离相等的点()

  分析及解答:

  (1)如图(1)四边形ABC D中,AC=BD,但ABCD不为矩形,

  (2)对角线互相平分的四边形即平行四边形,对角线相等的平行四边形为矩形

  (3)如图(2),四边形ABCD中,B=90,但ABCD不为矩形

  (4)矩形 对角线的交点O到四个顶点距离相等,如图(3),

四年级观察日记400字4

  一、 教学目标

  (一)。使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  (二)。培养学生观察能力,提高他们分析问题和解决问题的能力;

  3。使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  我们可以直接看出像4x=24,x+1=3这样简单方程的解,但是仅仅依靠观察来解决比较复杂的方程是很困难的 ,因此,我们还要讨论怎么样解方程,方程是含有未知数的等式,为了讨论方程,我们先来看看等式有什么性质。

  像m+n=n+m,x+2x=3x,3x+!=5y这样的式子都是等式。

  由教科书中天平的图形,由它可以发现什么规律?

  我们可发现,如果在平衡的天平两边都加(或减)同样的量,天平还保持平衡。

  等式就像平衡的天平,它具有与上面的事实同样的性质。

  由此,我们得出等式的性质1

  等式两边加(或减)同一个数(或式子),结果仍相等。

  用字母表示:a=b,那么a±c=b±c

  等式的性质2

  等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  用字母表示:

  如果a=b,那么ac=bc

  如果 a=b,(c≠0),那么 =

  通过例题来对等式的性质进行巩固。

  例:利用等式的性质解下列方程。

  (1)x+7=26; (2)—5x=20; (3)— x—5=4

  分析:要使方程x+7=26转化为x=a(常数)的.形式,要去掉方程左边的7,因此两边要减7,另外两个方程如何转化为x=a的形式。

  解:(1)两边减7,得

  x+7—7=26—7

  于是

  x=19

  (2)两边同时除以—5,得

  =

  于是

  x=—4

  (3)两边加5,得

  —

  化简,得

  两边同乘—3,得

  x=—27

  一般地,从方程解出未知数的值以后,可以带如原方程检验,看这个值能否使方程的两边相等。

  让学生检验上题是否正确。

  (四)课堂练习

  利用等式的性质解下列方程并检验。

  (1)x—5=2; (2)0。3x=45; (3)2— x=3; (4)5x+4=0

  教师引导学生做,做好师生互动。

  四、课后总结

  1。本节课学习了哪些内容?

  2。利用等式的性质解方程方法和步骤是什么?

  3。在运用上述方法和步骤时应注意什么?

  五、作业布置;

  习题3。1,3,4,5题

四年级观察日记400字5

  一、教学目标

  (一)。及时巩固所学知识;

  (二)。培养学生观察能力,提高他们分析问题和解决问题的能力;

  (三)。使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  主要为习题处理,由浅入深,使学生把所学知识系统化。

  主要由学生完成,老师引导。

  习题3。1中,1。2。3都是基础知识题,让学生到黑板上做几道有代表意义的题,然后老师对错的给与纠正,让学生对基础知识题的正确把握。

  主要针对学生比较难懂的应用题来讲解;

  习题5,把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?

  分析:设获得一等奖的学生有X人,由已知条件得:

  X×200+(22—X)×50=1400

  本题要让学生理解这种设未知数建立方程的思想,设获得一等奖的学生有X人,那么二等奖的人数就是22—X。

  习题6,种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺少6棵苗,有多少人种数?

  分析:两种方法种树苗,等式就是总树苗相等,设有X人种树,

  那么:10X+6=12X—6

  所以找到等式就是列出方程的重要一步。

  习题7,一辆汽车已经行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?

  分析:由已经行驶了12000千米,计划每月再行驶800千米,最后达到20800千米,我们设X个月后达到目标,列出等式

  12000+800X=20800

  总之,找出他们之间存在的相等关系就是解决问题的`关键。

  通过系统的学习,让学生的综合运用能力提高,对拓广探索中的题目老师要细心讲解,因为学生对这些题的理解有困难。

  四、课堂总结

  通过大量的练习,及时巩固所学知识,使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题。

  五、作业布置

  习题3。1第7、8题。

四年级观察日记400字6

  随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。

  1教学目标的制定

  制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。

  2教法学法的制定

  制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。

  3教学重难点的制定

  教学重难点的制定也应结合各层次学生的具体情况而定。

  4教学过程的设计

  4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的`内容。

  4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。

  4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。

  5练习与作业的设计

  教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。

  分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。

四年级观察日记400字7

  教学目标

  ①感受生活中幂的运算的存在与价值.

  ②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.

  ③逐步形成独立思考、主动探索的习惯.

  ④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.

  教学重点与难点

  重点:幂的三个运算性质.

  难点:幂的三个运算性质.

  教学设计

  创设情境导入新课

  问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?

  从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习.

  学生略作思考后得出,它工作103s可以进行的运算次数是1012×103.怎样计算1012×103?

  根据乘方的意义可以知道:

  探究新知1.探一探根据乘方的意义填空:

  从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.

  学生独立思考后回答,教师板演.

  2.猜一猜

  问:看看计算结果,你能发现结果有什么规律吗?

  学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.

  3.说一说

  am×an(m,n是正整数)?学生说出理由,教师板演共同得出结论:am×an=am+n(m,n都是正整数)

  即同底数幂相乘,底数不变,指数相加.

  注意性质中的m、n的取值范围.

  注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能力是有益的.

  4.想一想

  am×an×ap=?

  5.做一做

  例1教科书第142页的例1(1)~(4)

  (5)—a3a5;

  (6)(x+1)2(x+1)3

  同底数幂的性质很容易推广到三个以上的同底数幂相乘.

  在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“—a3”的底数是“a”还是“—a”.性质中的'字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.

  6.自主学习

  根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.

  7.做一做

  例2教科书第171页的例2(1)~(4)

  (5) —(x3)4x2

  8.想一想

  让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么规律?

  学生自己归纳出积的乘方的运算性质:(ab)n=anbn(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

  那么,(abc)n=?

  注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.

  9.做一做

  例3教科书第172页的例3(1)~(4);补充:(5) [—3(x+y)2]3

  例4 计算:x(x2)3—2x4x2

  比一比

  这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.

  深入探究例5计算:(1)(—8)20xx(—0。125)20xx(2)(—2)2n+1+2(—2)2n(n为正整数).

  在这三个性质中的底数、指数中,指数注明为正整数,而底数可以是数、字母或式.把底数进一步扩充到式的范围.

  议一议

  下面的计算对不对?如果不对,应当怎样改正.

  (1)a3a3=a6; (2)b4b4=2b4;

  (3)x5+x5=x10; (4)y7y=y8;

  (5)(a3)5=a8; (6)a3a5=a15;

  (7)(a2)3a4=a9; (8)(xy3)2=xy6;

  (9)(—2x)3=—2x3

  注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.

  小结

  组织学生讨论和辨析三个运算性质.

  课外巩固

  1.必做题:教科书第148页习题15。1第1、2题.

  2.备选题:

  (1)计算:

  (2)计算:am—1an+2+am+2an—1+aman+1

  (3)已知:am=7,bm=4,则(ab)2m=______

  (4)已知:3x+2y—3=0,则27x9y=___________

四年级观察日记400字8

  一、教学案例的特点

  1、案例与论文的区别

  从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

  从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

  2、案例与教案、教学设计的区别

  教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

  3、案例与教学实录的区别

  案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

  4、教学案例的特点是

  ——真实性:案例必须是在课堂教学中真实发生的事件;

  ——典型性:必须是包括特殊情境和典型案例问题的故事;

  ——浓缩性:必须多角度地呈现问题,提供足够的信息;

  ——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

  二、数学案例的结构要素

  从文章结构上看,数学案例一般包含以下几个基本的元素。

  (1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的.,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。

  (2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

  (3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

  (4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

  (5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

  三、初中数学教学案例主题的选择

  新课程理念下的初中数学教学案例,可从以下六方面选择主题:

  (1)体现让学生动手实践、自主探究、合作交流的教学方式;

  (2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

  (3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;

  (4)体现数学与信息技术整合的教学方法;

  (5)体现教师在教学过程中的组织者、引导者与合作者的作用;

  (6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

四年级观察日记400字9

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的'问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

四年级观察日记400字10

  教学目标

  1.经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下的影子。

  2.会用观察、想像,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

  3. 了解平行投影与物体三种视图之间的关系。

  教学重点 探讨物体在太阳光下所形成的影子的大小、形状、 方向等。

  教学难点 平行投影与物体三种 视图之间的关系的理解。

  教学方法 观察实践法

  教学后记

  教学内容及过程备注

  一、创设情境、实例导入

  引言:影子是我们司空见惯的,但你知道其中的奥 妙吗?

  概念:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。

  二、操作感知、建立表象

  实践:取若干长短 不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。

  提问:如果改变小棒或纸片 的位置和方向,它们的影子发生了什么变化?

  概念:太阳光线可以看成平行光线,像这样的光线所形成的.投影称为平行投影。

  议一议

  提出问题:1.在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由 。

  2.在同一时刻,大树和小树的影子与它们的高度之间有什么关系 ?与同伴交流。

  学生观察、交流。

  做一做

  某校墙边有甲、乙两根木杆。

  (1)某一时刻甲木杆在阳光下的影子如图4-12所示,你能画出此时乙木杆的影子吗?(用线段表示影子)

  在图4-12中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?

  (3)在你所画的图形中有相似三角形吗?为什么?

  学生画图、实验、观察、探索。

  议一议

  小亮认为,物 体的主视图实际上就是说物体在某一平行光线下的投影(如图4-13),左视图和俯视图也是如此, 你同意这种看 法吗?先想一想,再 与同伴交流。

  学生观察、理解、交流。

  三、随堂练习

  课本随堂练习

  学生观察、画图、合作交流。。

  四、课堂总结

  本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不同时刻影子的 方 向和大小变化特征。

  五、布置作业

  课本习题4.3 1、2、3 试一试

四年级观察日记400字11

  学习目标 1、了解负数是从实际需要中产生 的;

  2、能判断一个数是正数还是负数,理解数0表示的量的意义;

  3、会用正负数表示实际问题中具有相反意义的量.

  重点

  难点 重点:正、负数的概念,具有相反意义的量

  难点:理解负数的概念和数0表示的量的意义

  教学流程 师生活动 时间 复备标注

  一、导入新课

  我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.

  老师刚才的介绍中出现了一些数,它们是些什么数呢?

  [投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.

  在生活中,仅有整数和分数够用了吗?

  二、新授

  1、自学章前图、第2 页,回答下列问题

  数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?

  什么是正数,什么是负数?

  归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….

  这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.

  如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.

  2、自学第2—3页,回答下列问题

  大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?

  0有什么意义?

  归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.

  0的.意义已不仅仅是表示“没有”,它还可以表示一个确定的量.

  3、用正负数表示具有相反意义的量:自学课本3—4页

  有哪些相反意义的量?

  请举出你所知道的相反意义的量?

  “相反意义的量”有什么特征?

  归纳小结:一是意义相反,二是有数量,而且是同类量.

  完成3页练习

  4、例题

  自学例题,完成 归纳。寻找问题。

  完成4页练习

  三、课堂达标练习

  课本第5页练习1、2、3、4、7、8.

  四、课堂小结

  1、到目前为止,我们学习的数有哪几种?

  2、什么是正数、负数?零仅仅表示“没有”吗?

  3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用. 明确目标

四年级观察日记400字12

  课题:12.3等腰三角形(第一课时)

  教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时

  任课教师:东湾中学李晓伟

  设计理念:

  教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。

  ㈠教材的地位和作用分析

  等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。

  另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。

  ㈡教学内容的分析

  本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的.性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。

  在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。

  二、目标及其解析

  ㈠教学目标:

  知识技能:

  1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;

  3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。

  数学思考:

  1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;

  2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力.

  解决问题:

  1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;

  2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.

  情感态度:

  1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;

  2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;

  3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益.

  ㈡教学重点:

  等腰三角形的性质及应用。

  ㈢教学难点:

  等腰三角形性质的证明。

  ㈣解析

  本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;

  2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;

  3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。

  三、问题诊断分析

  1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。

  2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。

  3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计

  课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。

  四、教法、学法:

  教法:

  常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。

  本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。

  学法:

  学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。

  五、教学支持条件分析

  在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。

  六、教学基本流程

  七、教学过程设计

四年级观察日记400字13

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察→分析→推导→计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书: 公式

  师:小学里学过哪些面积公式?

  板书: S = ah

  附图

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

  (二)探索求知,讲授新课

  师:下面利用面积公式进行有关计算

  (出示投影2)

  例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。

  师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

  2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)

  学生口述解题过程,教师予以指正并指出,强调解题的规范性.

  【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

  (出示投影3)

  例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积

  学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

  评讲时注意1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

  2.本题实际上是由圆的面积公式推导出环形面积公式.

  3.进一步强调解题的'规范性

  教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

  测试反馈,巩固练习

  (出示投影4)

  1.计算底 ,高 的三角形面积

  2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t

  3.已知圆的半径 , ,求圆的周长C和面积S

  4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。

  (1)求A地到B地所用的时间公式。

  (2)若 千米/时, 千米/时,求从A地到B地所用的时间。

  学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

  【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

  师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

  八、随堂练习

  (一)填空

  1.圆的半径为R,它的面积 ________,周长 _____________

  2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________

  3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________

  (二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?

  九、布置作业

  (一)必做题课本第22页1、2、3第23页B组1

  (二)选做题课本第22页5B组2

  十、板书设计

  附:随堂练习答案

  (一)1。 2。 3。

  (二)

  作业答案

  必做题1。

  2。 3。

  选做题5。

  探究活动

  根据给出的数据推导公式。

四年级观察日记400字14

  教学目标:

  知识与技能:经历从不同方向观察物体的活动过程,体会出从不同方向看同一物体,可能看到不同的结果;能识别从不同方向看几何体得到相应的平面图形。

  过程与方 法:通过观察能画出不同角度看到的平面图形(三视图)。

  情感态度与价值观:体会视图是描述几何体的重要工具,使学生明白看待事物时,要从多个方面进行。

  教学重点:学会从不同方向看实物的方法,画出三视图。

  教学难点:画出三视图,由三 视图判断几何体。

  教材分析:本节内容是研究立体图形的又一重要手 段,是一种独立的研究方法,与前后知识联系不大,学好本课的关键是尊重视觉效果,把立体图形映射成平面图形,其间要进行三维到二维这一实质性的变化。在由三视图还原立体图形时,更需要一个较长过程,所以本节用学生比较熟悉的几何体来降低难度。

  教学方法:情境引入 合作 探究

  教学准备:课件,多组简单实物、模型。

  课时安排:1课时

  环节 教 师 活 动 学生活动 设 计 意 图

  创

  设

  情

  境 教师播放多媒体课件,演示庐山景观,请学生背诵苏东坡《题西林壁》, 并说说诗中意境。

  并出现:横看成岭侧成峰,

  远近高低各不同。

  不识庐山真面目,

  只缘身在此山中。

  观赏美景

  思考“岭”与“峰”的区别。 跨越学科界限,营造一个崭新的教学学习氛围,并从中挖掘蕴含的数学道理。

  新

  课

  探

  究

  一

  1、教师出示事先准备好的实物组合体,请三名学生分别站在讲台的左侧、右侧和正前方观察,并让他们画出草图,其他学生分成三组,分别对应三个同学,也分别画出 所见图形的草图。

  2、看课本13页“观察与思考”。

  图:

  你能说出情景的先后顺序吗?你是通过哪些特征得出这个结论的?

  总结:通过以前经验,我们可知,从不同的方向看物体,可能看到不同图形。

  3、从实际生活中举例。

  观察,动手画图。

  学生观察图片,把图片按时间先后排序。

  利用身边的事物,有助于学生积极主动参与,激发学生潜能,感受新知。

  让学生感知文本提高自学能力。

  利于拓宽学生思维。

  新

  课

  探

  究

  二 1、感知文本。学生阅读13页“观察与思考2”,

  图:

  2、上升到理性知识:

  (1)从上面看到的图形叫俯视图;

  (2)从左面看到的图形叫左视图;

  (3)右正面看到的图形叫主视图;

  3、练一练:分别画出14页三种立体图形的三视图,并回答课本上 三个问题。(强调上下左右的方位不要出错) 学生阅读,想象。

  学生分组练习,合作交流。 把已有经验重新建构。

  感性知识上升到理性知识 。

  体会学习成果,使学生产生成功的喜 悦。

  新课探究三 1、连线,把左面的三视图与右边的立体图形连接起来。

  主视图 俯视图 左视图 立体图形

  2、归纳:多媒体课件演示

  先由其中的两个图为依据,进行组合,用第三个图进行检验。

  学生自己先独立思考,得出答案后,小组之间合作交流,互相评价。

  以小组为单位讨论思考问题的方法。

  把由空间到平面的转化过程逆转回去,充分利用本课前阶段的感知,可以降低难度。

  课堂反馈

  1、考查学生的.基础题。

  2、用小立方体搭成一个几何体,使它的主视图和俯视图如图所示, 搭建这样的几何体,最多需要几个小立方体?至少需要几个小立方体?

  主视图 俯视图 学生独立自检

  学生总结出以俯视图为基础 ,在方格上标出数字。

  简单知识,基本方法的综合

  课堂总结

  1、学习到什么知识?

  2、学习到什么方法?

  3、哪些知识是自己发现的?

  4、哪些知识是讨论得出的?

  学生反思

  归纳 让学生有成功喜悦,重视与他人合作。

  附:板书设计

  1.4 从不同方向看几何体

  教学反思:

  从 苏东坡的诗词《题西林壁》引,配以多彩的画面,为学生营造一个宽松、生动的教学环境。通过学生分组讨论,动手操作,师生、学生之间的合作交流,并辅以多媒体课件的合理应用,让学生完全处于一种高参与状态。最终实现 了素材与实际相结合,经验与挑战相作用,立体与平面相转换。本课中引入了课本中没有而学生也能接受的三个概念:主视图、俯视图、左视图。教者很难把握学生的

四年级观察日记400字15

  一.学生情况分析

  学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。

  二.教学任务分析

  教学目标:

  知识目标:

  1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

  2.掌握正方形的性质定理1和性质定理2。

  3.正确运用正方形的性质解题。

  能力目标:

  1.通过四边形的从属关系渗透集合思想。

  2.在直观操作活动和简单的说理过程中,发展学生初步的合情推理能力、主动探究习惯,逐步掌握说理的基本方法。

  情感与价值观

  1.通过理解四种四边形内在联系,培养学生辩证观点

  教学重点:正方形的性质的应用.

  教学难点:正方形的性质的应用.

  三、教学过程设计

  课前准备

  教具准备: 一个活动的平行四边形木框、白纸、剪刀.

  学生用具:白纸、剪刀

  教学过程设计分成四分环节:

  第一环节:巧设情境问题,引入课题

  第二环节:讲授新课

  第三环节:新课小结

  第四环节:布置作业

  第一环节 巧设情境问题,引入课题

  进入正题,提出本节课的研究主题正方形

  第二环节 讲授新课

  主要环节

  (1)呈现两种通过不同途径得到正方形的过程,给正方形下定义

  (2)讨论正方形的性质

  (3)通过练习加强对正方形性质的理解

  (4)寻找平行四边形、矩形、菱形、正方形之间的相互关系。

  (5)寻找正方形的判定方法

  目的:

  1. 正方形是特殊的平行四边形,也是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到。于是在课上呈现这两种变化,为后面寻求平行四边形、矩形、菱形、正方形的关系打下基础。

  2. 由于采用了两种正方形形成的方式,因此正方形的'性质和判定方法都可以从中挖掘和发现。

  大致教学过程

  呈现一个平行四边形变成正方形的全过程.(演示)

  由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形.

  这个变化过程,可用如下图表示

  由此可知:正方形是一组邻边相等的矩形.即:一组邻边相等的矩形叫做正方形.

  这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形.

  这个变化过程,也可用图表示

  你能根据上面的变化过程,给正方形下定义吗?

  一组邻边相等的平行四边形是菱形.正方形是一个角为直角的菱形,所以可以说:有一个角是直角的菱形叫做正方形.

  由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形.

  因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即:正方形具有平行四边形、菱形、矩形的一切性质.

  正方形的性质:

  边:对边平行、四边相等

  角:四个角都是直角

  对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.

  正方形是轴对称图形吗?如是,它有几条对称轴?

  正方形是轴对称图形,它有四条对称轴,即:两条对角线,两组对边的中垂线.

  例题

  [例1]如图,四边形ABCD是正方形,两条对角线相交于点O,求AOB,OAB的度数.

  分析:本题是正方形的性质的直接应用.正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性.

  解:正方形ABCD是菱形,对角线AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且对角线AC平分BAD,因此:OAB=45

  拿出准备好的剪刀、白纸来做一做

  将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠,想,剪切)

  只要保证剪口线与折痕成45角即可.因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形.

  正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?

  正方形、矩形、菱形及平行四边形四者之间有什么关系呢?

  它们的包含关系如图:

  此图给出了正方形的判别条件,即怎样判定一个平行四边形是正方形?

  先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形.

  由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断.

  第三环节 课堂练习

  教材 随堂练习1,2

  第四环节 课时小结

  正方形的定义:一组邻边相等的矩形.

  正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板)

  第五环节 课后作业

  课本习题4.7 1,2,3.

  四.教学设计反思

  在教材中,并没有明确的给出正方形的判定定理。那么教师在课堂上应该帮助学生理清思路,使他们明确判定的方法。

  为了实现这个目标,在本节课的开始,教师就采取了两种方式呈现正方形的形成过程,在直观上帮助学生认识了正方形与矩形、正方形与菱形之间的关系;在讲解正方形性质的过程中又再次强化了这种认识。通过层层铺垫,让学生明确矩形+邻边相等就是正方形,菱形+一个直角就是正方形,如何判定图形是矩形或是菱形,前面已经学习过,因此关于正方形的判定是需要一个条件一个条件“叠加”完成的。

【四年级观察日记400字】相关文章:

观察日记 观察日记06-03

连续观察日记 连续观察日记 四年级05-17

蜘蛛观察日记 蜘蛛观察日记四年级作文03-30

观察日记观察黄豆日记05-17

观察日记格式 观察日记格式怎么写四年级03-30

植物生长观察日记 植物生长观察日记四年级04-01

观察日落的日记 观察日落的日记04-02

吊兰观察日记 吊兰的观察日记03-31

观察日记动物 观察小狗的日记04-01

观察动物观察日记11-13