当前位置:日记网>学生日记>四年级日记> 四年级观察日记400字

四年级观察日记400字

时间:2024-06-24 10:00:54 四年级日记 我要投稿
  • 相关推荐

四年级观察日记400字经典[15篇]

  忙碌而充实的一天结束了,这一天里,大家身边一定有一些有趣的见闻吧,让我们一起认真地写一篇日记吧。那么写日记需要注意哪些问题呢?以下是小编为大家收集的四年级观察日记400字,希望对大家有所帮助。

四年级观察日记400字经典[15篇]

四年级观察日记400字1

  教学目标

  (一)教学知识点

  1.命题的组成:条件和结论。 2。命题的真假 。 3。了解数学史。

  (二)能力训练要求

  1.能够分清命题的题设和结论。会把命题改写成“如果……,那么……”的形式;能 判断命题的真假。

  2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法。

  3.通过对欧几里得《原本》 的介绍,感受几何的演绎体系对数学发展和人类文明的价值。

  (三)情感与价值观要求

  1.通过举反例的方法来 判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体。

  2.通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣。

  教学重点

  找出命题的条件(题设)和结论。

  教学 难点

  找出命题的条件和结论。

  教学过程

  Ⅰ.巧设现实情境,引入课题

  上节课我们研究了命题,那么什么叫命题呢?

  下面大家来 想一想:

  观察下列命题,你能发现这些命题有什么共同的结构特征?

  (1)如果两个三角形的三条边对应相等,那么这两个三角形全等。

  (2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

  (3)如果一个三角形是 等腰三角形,那 么这个三角形的两个底角相等。

  (4)如果一个四边形的对角线相等,那么这个四边形是矩形。

  (5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形。

  学生分组讨论。

  ①这五个命题都是用“如果……,那么……”的 形 式叙述的。

  ②每个命题都 是由已知得到结论。

  ③这五个命题的每个命题都有条件和结论。

  Ⅱ.讲授新课

  1 .命题的组成:每个命题都有条件和结论两部分组成。

  条件是已知的事项,结论是由已知事项推断 出的事项。

  2.举例说明 命题如何写成“如果……,那么……”的形式

  ①明显的。

  ②不明显的。

  做一做

  1.下列各命题的条件是什么?结论是 什么?

  (1)如果两个角相等,那么它们是对顶角;

  (2)如果a>b,b>c,那么a=c;

  (3)两角和其中一角的对边对应 相等的两个三角形全等;

  (4)菱形的四条边都 相等;

  (5)全等三角形的面积相等。

  2.上述命题中哪 些是正确的?哪些是不正确的.?你怎么知道它们是不正确的?

  3.真命题和假命题

  我们把正确的命题称为真命题(tru e statement),不正确的命题称为假命题(false statement)。

  思考:如何证实一个命题是真命题呢?

  4.我们这套教材有如下命题作为公理:

  1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

  2.两条平行线被第三条直线所 截,同位角相等。

  3.两边及其夹角对应相等的两个三角形全等。

  4.两角及其夹边对应相等的两个三角形全 等。

  5.三边对应相等的两个 三角形全等。

  6.全等三角形的对应边相等,对应角相等。

  Ⅲ.课堂练习

  Ⅳ.课时小结

  本节课我们主要研究了命题的组成及真假。知道任何一个命题都是由条件和结论两部分组成。命题分为真命题和 假命题。

  在辨别真假命题时。注意:假命题只需举一个反例即可。而真命题除公理和性质外,必须通过推理得证。

  Ⅴ.课后作业

  2.预习提纲

  (1)平行线的判定方法的证明

  (2)如何进行推理

四年级观察日记400字2

  【教学目标】

  1进一步认识方程及其解的概念。

  2理解一元一次方程的概念,会根据简单数量关系列一元一次方程。 3体验用尝试、检验解一元一次方程的思想与方法。

  【教学重点】

  一元一次方程的概念和解法贯穿整章,因此“一元一次方程的概念”与“尝试检验法”求解是本节教学的重点。

  【教学难点】

  用尝试、检验的方法解一元一次方程的过程比较复杂,是本节教学的难点。

  【学习准备】

  1.下面哪些式子是方程?

  (1)3

  (2)1;

  (2)x31;

  (3)3x5;

  (4)2xy4;

  (5)x31;

  (6)3x14.

  2.方程与等式有什么联系与区别?

  方程是解决实际问题的一个重要数学模型,需要我们进一步学习研究。

  【课本导学】

  思考一阅读并解答课本第114页“合作学习”的三个问题,思考:

  1.列方程就是根据问题中的相等关系,写出含有未知数的等式。

  (1)原价为50元的衣服,按8折销售,售价是多少元?原价若为x元呢?

  (2)你能举例说明你对“物体在水下,水深每增加10米,物体承受的压力就增加

  (3)张明投进x个,那么“小杰投进的球的个数”可以怎样表示?“3人一共投进的球数”怎样表示?

  你是怎么理解“三人平均每人投进14个球”这句话的?

  思考二观察你所列的方程,这些方程之间有哪些共同的特点?请思考:

  1.你可以从哪些角度对这些方程进行观察呢?说说你的想法。

  2.具有“合作学习”中所列方程一样特点的方程叫做一元一次方程,你能说说这个名称中“元”和“次”的含义吗?[练习]完成课本第115页课内练习

  1.『归纳』判断一个方程是不是一元一次方程应抓住哪几个关键特点?

  思考三阅读课本第114页倒数3行至第115页正文结束,并思考下面的问题:

  1.(1)如果一个数是方程有什么关系?

  (2)如果一个数是方程350应该是多少?

  (3)要判断一个数是不是方程3m?2?1?m的解,你会怎么做?2.对方程2x12

  14的解,这个数代入方程的左边计算得到的值与14 3 1

  x500的解,这个数代入方程的左边计算得到的值10 2x12

  14进行尝试求解时,你认为x必须是整数吗

  x可以取21吗20呢?x可以取10或者比10还小的值吗?为什么?说说你的想法。

  [练习]完成课本第115页课内练习

  2.『归纳』1.检验一个数是不是一元一次方程的解的步骤有哪些?

  2.用尝试检验的方法解一元一次方程,你觉得关键的步骤有哪些?【盘点收获】

  【学习检测】

  1.下列说法正确的是()

  (a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程

  2.下列式子中,属于一元一次方程的'是()(a)5x 1

  (b)ab8(c)1257(d)5x82x9 3

  3.设某数为x,根据下列条件列出求该数的方程:

  (1)某数加上1,再乘以2,得6.

  (2)某数与7的和的2倍等于10.

  (3)某数的5倍比某数小3.

  4.某校初一年级328名师生乘车外出春游,己有2辆校车可乘坐64人,还需租用44座的客车多少辆?

  设还需租用x辆,则可列出方程44x+64=328.

  (1)写出一个方程,使它的解是

  2.【作业布置】略

  【课后反思】

  课堂教学总是在“预设”与“生成”间交融进行,如何根据学情做好充分的预设,又根据课堂生成灵活应变,这既能反映教师的专业素养,又能展示教师的教学功底.反刍本课,笔者认为还有以下几方面值得反思与改进:

  1.忽略课堂“火花”,错失追问良机

  在交流对方程的共同特征探讨的环节,有一个同学直接说出了“一元一次方程”的名称.【片断实录】

  师:讨论好了吧.哪个小组先来说说你们所归纳的特点.生8:这些等式都含有未知数的,用x或y来表示.师(板书):嗯,都含有未知数,这个未知数呢,有的地方是x,有的地方是y.还有呢?生8:还有黑板上的所有等式都是一元一次方程.

  师(惊喜):嗯,你都知道了所有的等式都是我们今天接下来要具体研究的一元一次方程,这位同学已经预习了呢.我们看,刚才这位同学归纳了:都含有未知数.那么请同学们看得更仔细一点,未知数在这里具有什么特征呢?

  不难看出,笔者在这里没有很好地抓住学生的课堂即时生成资源,用一句“嗯,……,这位同学已经预习了呢.”轻轻带过,仍然拉着学生回到了预设的轨道“……,请同学们看得更仔细一点,未知数在这里具有什么特征呢?”如果当时直接问她“那么请你讲讲什

四年级观察日记400字3

  一、 教学目标

  (一)。使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  (二)。培养学生观察能力,提高他们分析问题和解决问题的能力;

  3。使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  我们可以直接看出像4x=24,x+1=3这样简单方程的解,但是仅仅依靠观察来解决比较复杂的方程是很困难的 ,因此,我们还要讨论怎么样解方程,方程是含有未知数的等式,为了讨论方程,我们先来看看等式有什么性质。

  像m+n=n+m,x+2x=3x,3x+!=5y这样的式子都是等式。

  由教科书中天平的图形,由它可以发现什么规律?

  我们可发现,如果在平衡的天平两边都加(或减)同样的量,天平还保持平衡。

  等式就像平衡的天平,它具有与上面的事实同样的'性质。

  由此,我们得出等式的性质1

  等式两边加(或减)同一个数(或式子),结果仍相等。

  用字母表示:a=b,那么a±c=b±c

  等式的性质2

  等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  用字母表示:

  如果a=b,那么ac=bc

  如果 a=b,(c≠0),那么 =

  通过例题来对等式的性质进行巩固。

  例:利用等式的性质解下列方程。

  (1)x+7=26; (2)—5x=20; (3)— x—5=4

  分析:要使方程x+7=26转化为x=a(常数)的形式,要去掉方程左边的7,因此两边要减7,另外两个方程如何转化为x=a的形式。

  解:(1)两边减7,得

  x+7—7=26—7

  于是

  x=19

  (2)两边同时除以—5,得

  =

  于是

  x=—4

  (3)两边加5,得

  —

  化简,得

  两边同乘—3,得

  x=—27

  一般地,从方程解出未知数的值以后,可以带如原方程检验,看这个值能否使方程的两边相等。

  让学生检验上题是否正确。

  (四)课堂练习

  利用等式的性质解下列方程并检验。

  (1)x—5=2; (2)0。3x=45; (3)2— x=3; (4)5x+4=0

  教师引导学生做,做好师生互动。

  四、课后总结

  1。本节课学习了哪些内容?

  2。利用等式的性质解方程方法和步骤是什么?

  3。在运用上述方法和步骤时应注意什么?

  五、作业布置;

  习题3。1,3,4,5题

四年级观察日记400字4

  [教学目标]

  1. 认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位

  2. 渗透对应关系,提高学生的数感.

  [教学重点与难点]

  重点:平面直角坐标系和点的坐标.

  难点:正确画坐标和找对应点.

  [教学设计]

  [设计说明]

  一.利用已有知识,引入

  1.如图,怎样说明数轴上点A和点B的位置,

  2.根据下图,你能正确说出各个象棋子的位置吗?

  二.明确概念

  平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

  由数轴的表示引入,到两个数轴和有序数对。

  从学生熟悉的物品入手,引申到平面直角坐标系。

  描述平面直角坐标系特征和画法

  正方向;两个坐标轴的`交点为平面直角坐标系的原点。

  点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

  例1 写出图中A、B、C、D点的坐标。

  建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

  你能说出例1中各点在第几象限吗?

  例2 在平面直角坐标系中描出下列各点。

  ()A(3,4);B(-1,2);C(-3,-2);D(2,-2)

  问题1:各象限点的坐标有什么特征?

  练习:教材49页:练习1,2。

  三.深入探索

  教材48页:探索:

  识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

  [巩固练习]

  1. 教材49页习题6.1——第1题

  2. 教材50页——第2,4,5,6。

  [小结]

  1. 平面直角坐标系;

  2. 点的坐标及其表示

  3. 各象限内点的坐标的特征

  4. 坐标的简单应用

  [作业]

  必做题:教科书50页:3题

  (教材51页综合运用7,8,9,10为练习课内容)

  明确点的坐标的表示法

  仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系

  通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征

四年级观察日记400字5

  一、教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  二、重点、难点

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  三、教学过程

  (一)复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得1.2x=6。

  因为1.2×5=6,所以小红能买到5本笔记本。

  (二)新授

  问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)。

  列方程:设需要租用x辆客车,可得解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的.年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)。

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  四、巩固练习

  教科书习题

  五、小结

  本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

四年级观察日记400字6

  教学目标

  1.经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下的影子。

  2.会用观察、想像,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

  3. 了解平行投影与物体三种视图之间的.关系。

  教学重点 探讨物体在太阳光下所形成的影子的大小、形状、 方向等。

  教学难点 平行投影与物体三种 视图之间的关系的理解。

  教学方法 观察实践法

  教学后记

  教学内容及过程备注

  一、创设情境、实例导入

  引言:影子是我们司空见惯的,但你知道其中的奥 妙吗?

  概念:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。

  二、操作感知、建立表象

  实践:取若干长短 不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。

  提问:如果改变小棒或纸片 的位置和方向,它们的影子发生了什么变化?

  概念:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

  议一议

  提出问题:1.在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由 。

  2.在同一时刻,大树和小树的影子与它们的高度之间有什么关系 ?与同伴交流。

  学生观察、交流。

  做一做

  某校墙边有甲、乙两根木杆。

  (1)某一时刻甲木杆在阳光下的影子如图4-12所示,你能画出此时乙木杆的影子吗?(用线段表示影子)

  在图4-12中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?

  (3)在你所画的图形中有相似三角形吗?为什么?

  学生画图、实验、观察、探索。

  议一议

  小亮认为,物 体的主视图实际上就是说物体在某一平行光线下的投影(如图4-13),左视图和俯视图也是如此, 你同意这种看 法吗?先想一想,再 与同伴交流。

  学生观察、理解、交流。

  三、随堂练习

  课本随堂练习

  学生观察、画图、合作交流。。

  四、课堂总结

  本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不同时刻影子的 方 向和大小变化特征。

  五、布置作业

  课本习题4.3 1、2、3 试一试

四年级观察日记400字7

  教材分析

  1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

  2.书中的定义是以未知数的'个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

  3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

  学情分析

  1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

  2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

  3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

  教学目标

  1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

  2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

  教学重点和难点

  1、重点:概念的形成及一般形式。

  2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

四年级观察日记400字8

  一、学生知识状况分析

  八年级学生正处于形象思维过渡的阶段,对观察、猜想、探索性的问题充满好奇。本节课是第四章第九节图形的放大与缩小的第二课时,在上一课时学习了位似图形及相关概念后,学生动手将一些简单图形进行了放大或缩小,已获 得一些相关的知识经验和体验,对位似图形及其性质有一定了解,在此基础上,本节课通过将一个图形放大或缩小,让学生进一步掌握将图形放大或缩小的具体方法。同时,在以往的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的经验,具备了归纳知识的能力。

  二、教学任务分析

  基于学生已经学过相似、位似等有关知识,并能将某一简单图形按一定比例放大或缩小。本节课以将一个图形(箭头)按1:2的比例放大为例,继续学习图形的放大与缩小的知识,通过具有挑战性的内容,促使学生进一步熟练掌握利用位似将一个图形 按比例放大或缩小,近而能初步归纳出位似图形放大或缩小的规律,形成有关技能,发展思维能力。本节课将观察、动手操作等实践活动贯穿于教学活动的始终。同时,有意识地培养学生积极的情感和态 度。为此,本节课的教学目标是:

  1、能熟练准确地利用图形的位似将一个图形放大或缩小;

  2、了解常用的几种图形的放大或缩小的数学依据;

  3、有意识地培养学生学习数学的积极情感,激发学生对图形学习的好奇心,形成多角度、多方法想问题的学习习惯;

  4、进一步培养学生动手操作的良好习惯。

  教学重、难点:

  1、重点:利用位似将一个图形放大或缩小;

  2、难点:比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律

  教学设备:利用计算机制作课件,辅助教学。

  三、教学过程分析

  本节课设计了七个教学环节:第一环节:复习引入;第二环节:例题讲授(课件展示);第三环 节:议 一议;第四环节:想一想;第五环节:巩固练习;第六环节:课堂小结;第七环节:布置作业。

  第一 环节:复习引入

  活动内容:

  提问:1、什么叫做位似图形,它具有什么性质?

  2、如何将画在纸上的一个图片放大,使放大前后对应线段的比为1:2?你有哪些方法?与同伴交流。

  让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正,补充。

  教师说明:除利用前面已经用过的“橡皮筋”,方格纸等方法外,在计算机上,借助一些软件也可以很方便地将一个图形放缩,如有条件,可以试试。

  下面我们继续学习如何将纸上的一个图形放大。(从而引入新课)

  活动目的:

  通过复习,回顾位似图形的相关知识,为新课的进行做好铺垫。

  注意事项:

  复习时间不宜过长,对于“橡皮筋”法和方格纸法只需简单描述即可,此处不必让学生动手操作。

  第二环节:例题讲授

  活动内容:

  课件展示,让学生观察图形(如右图),要求作出一个新图形,使新图形与原图形对应 线段的比为2 :1。

  1、让学生先分组讨论,找出方法,然后说明方法的可行性。(橡皮筋法、方格纸放大 法)教师对于学生找到的方法进行简单的评述,并引入本课的主题:利用位似图形放大(或缩小)图形。注意,此过程对于学过方法的回顾,不必花太多的`时间,学生找出方法即可,因为这两种方法不是本课的重点。

  2、教师讲解作图步骤及方 法(课件展示)。

  3、待课件展示后,教师引导学生小结,利用位似图形放大(或缩小)的作图步骤。

  简记方法:(1)选点;(2)作射线;(3)定对应点;(4)连线

  活动目的:

  用课件展示作图的步骤及过程,不仅能吸引学生的注意力,同时,让学生学会听课,观察,通过仔细观察,掌握利用位似图形放大(或缩小)图形的方法,并能对所学的作图方法进行初步归纳(用自己的语言描述)。

  注意事项:

  用课件展示作图的步骤及过程时,可重复操作,让学生看清楚。在重复操作之前,教师可进行必要的讲解, 以便在第二次课件展示时,学生能加深理解和基本掌握,并进一步归纳出作图的步骤(学生用自己的语言描述即可)。

  第三环节:议一议

  活动内容:

  1、问:对于上面的例题,你还有其他方法吗?[来源:ZXXK]

  提示:如果依次在射线PA、PB、PC、PD、PE、PF、PG上取点A、B、C、D、E、F、G呢?

  2、让学生动手按要求在草稿本上作图,此过程教师巡视学生的操作,并适时给予必要的指导。

  3、将较好的学生作图进行展示,并由学生说明作图的步骤。

  活动目的:

  让学生在活动中能够举一反三,触类旁通、善于发现、勤于探究,形成自主学习的良好学习习惯。

  注意事项:

  这一环节一定要让学生亲自动手,教师要特别关注学生的动手操作过程,对于在作图中出现的问题要及时给予解决。

  第四环节:想一想

  活动内容:

  课件展示:下面的说法对吗?为什么?

  (1)分别在△ABC的边AB、AC上取点D、E,使DE∥BC,那么△ADE是△ABC缩小后的图形。

  (2)分别在△ABC的边AB、AC延长线上取点D、E,使DE∥BC,那么△ADE是△ABC放大后的图形。

  (3)分别在△ABC的边AB、AC反向延长线上取点D、E,使DE∥BC,那么△ADE是△ABC放大后的图形。

  1、让学生在练习本上根据题意,画出草图,进行判断,同时说明理由。

  2、教师在学生回答各小题的同时,利用课件同步展示,进行集体讲解、交流。

  活动目的:

  通过具体的题目,继续引导学生关注线段的平行与三角形相似的位置关系;同时,通过练习,让学生学会分析问题、解决问题,同时巩固加深了学生 对本节知识的理解和掌握。

  注意事项:

  教学过程中,要给学生充足的时间进行思考,得出结论后,再进行集体交流和课件展示。

  第五环节:巩固练习

  活动内容:

  三角形的顶点坐标分别是A(2,2),B(4,2),C(6,4),试将△ABC缩小,使缩小后的△DEF与△ABC对应边的比为1:2。

  过程:先让学生思考,完成练习后,再用课件展示图例,讲解方法。

  活动目的:

  对本节知识进行巩固练习,以达到熟练掌握的目的。

  注意事项:

  教师进行巡视,关注学生的做题过程和效果,及时发现学生解题过程中存在的问题,并给予必要的帮助。对于普遍性的问题,应做集体讲解。如果学生使用别的方法,只要合理就应予以肯定。

  第六环节:课堂小结

  活动内容:

  (课件展示)问题:1、位似图形、位似中心、位似比的定义?

  2、位似图形的性质。

  3、位似图形的作法。

  活动目的:

  通过复习,让学生学会把知识系统化,加深对知识的理解和掌握,同时,培养学生有条理的进行思考。

  注意事项:

  小结的三个问题,应由学生思考后作出回答,相互补充,教师切不可代办。

  [来源:]

  第七环节:布置作业

  活动内容:

  1、教材P140页 习题4.13 1、 2

  2、试用几何画板将一个图形放大或缩小。

  活动目的:

  让学生在练习的过程中加深对本课知识的理解和掌握,作业2是为了让学有余力的同学能勇于探索,拓展知识。

  四、教学反思

  本节课,通过复习,再接着上新课,不仅学习了新的知识,同时,更进一步加深了对已学知识的理解和掌握。

  整堂课,采取学生观察、思考、动手作图等方式,真正体现了学生是课堂的主体,而教师的讲解及适时引导、点拨,促使学习过程有效的开展。其中展示学生的优秀作品,培养了学生 的成就感,增强了学生学好数学的信心。“想一想”环节,让学生动手操作,根据自己的理解,作出判断,培养学生主动学习的意识。

  通过本节课, 学生掌握了位似图形的画 法,积累了有关数学活动经验,并在这处过程中,通过独立思考,自主探索和合作交流,理解了位似图形的数学内涵,形成有关技能,发展了思维能力。

  采用多媒体教学已经成为教师的重要教学手段。运用多媒体教学,通过对感官的刺激获取的信息量,比单一的听老师讲课强得多。利用多媒多调动学生的学习兴趣,使学生主动学习,多媒体恰当的演示,使学生对所学知识产生了好奇心,激起了他们探索知识的欲望,最终达到提高课堂教学质量的目的。

四年级观察日记400字9

  教学目标

  ①感受生活中幂的运算的存在与价值.

  ②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.

  ③逐步形成独立思考、主动探索的习惯.

  ④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.

  教学重点与难点

  重点:幂的三个运算性质.

  难点:幂的三个运算性质.

  教学设计

  创设情境导入新课

  问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?

  从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的',学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习.

  学生略作思考后得出,它工作103s可以进行的运算次数是1012×103.怎样计算1012×103?

  根据乘方的意义可以知道:

  探究新知1.探一探根据乘方的意义填空:

  从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.

  学生独立思考后回答,教师板演.

  2.猜一猜

  问:看看计算结果,你能发现结果有什么规律吗?

  学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.

  3.说一说

  am×an(m,n是正整数)?学生说出理由,教师板演共同得出结论:am×an=am+n(m,n都是正整数)

  即同底数幂相乘,底数不变,指数相加.

  注意性质中的m、n的取值范围.

  注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能力是有益的.

  4.想一想

  am×an×ap=?

  5.做一做

  例1教科书第142页的例1(1)~(4)

  (5)—a3a5;

  (6)(x+1)2(x+1)3

  同底数幂的性质很容易推广到三个以上的同底数幂相乘.

  在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“—a3”的底数是“a”还是“—a”.性质中的字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.

  6.自主学习

  根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.

  7.做一做

  例2教科书第171页的例2(1)~(4)

  (5) —(x3)4x2

  8.想一想

  让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么规律?

  学生自己归纳出积的乘方的运算性质:(ab)n=anbn(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

  那么,(abc)n=?

  注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.

  9.做一做

  例3教科书第172页的例3(1)~(4);补充:(5) [—3(x+y)2]3

  例4 计算:x(x2)3—2x4x2

  比一比

  这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.

  深入探究例5计算:(1)(—8)20xx(—0。125)20xx(2)(—2)2n+1+2(—2)2n(n为正整数).

  在这三个性质中的底数、指数中,指数注明为正整数,而底数可以是数、字母或式.把底数进一步扩充到式的范围.

  议一议

  下面的计算对不对?如果不对,应当怎样改正.

  (1)a3a3=a6; (2)b4b4=2b4;

  (3)x5+x5=x10; (4)y7y=y8;

  (5)(a3)5=a8; (6)a3a5=a15;

  (7)(a2)3a4=a9; (8)(xy3)2=xy6;

  (9)(—2x)3=—2x3

  注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.

  小结

  组织学生讨论和辨析三个运算性质.

  课外巩固

  1.必做题:教科书第148页习题15。1第1、2题.

  2.备选题:

  (1)计算:

  (2)计算:am—1an+2+am+2an—1+aman+1

  (3)已知:am=7,bm=4,则(ab)2m=______

  (4)已知:3x+2y—3=0,则27x9y=___________

四年级观察日记400字10

  一、教学案例的特点

  1、案例与论文的区别

  从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

  从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

  2、案例与教案、教学设计的区别

  教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

  3、案例与教学实录的区别

  案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

  4、教学案例的特点是

  ——真实性:案例必须是在课堂教学中真实发生的事件;

  ——典型性:必须是包括特殊情境和典型案例问题的故事;

  ——浓缩性:必须多角度地呈现问题,提供足够的信息;

  ——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

  二、数学案例的结构要素

  从文章结构上看,数学案例一般包含以下几个基本的元素。

  (1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的.原因或条件。

  (2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

  (3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

  (4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

  (5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

  三、初中数学教学案例主题的选择

  新课程理念下的初中数学教学案例,可从以下六方面选择主题:

  (1)体现让学生动手实践、自主探究、合作交流的教学方式;

  (2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

  (3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;

  (4)体现数学与信息技术整合的教学方法;

  (5)体现教师在教学过程中的组织者、引导者与合作者的作用;

  (6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

四年级观察日记400字11

  一、素质教育目标

  (一)知识教学点

  1.使学生理解多项式的概念.

  2.使学生能准确地确定一个多项式的次数和项数.

  3.能正确区分单项式和多项式.

  (二)能力训练点

  通过区别单项式与多项式,培养学生发散思维.

  (三)德育渗透点

  在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.

  (四)美育渗透点

  单项式和多项式在前二章,特别是第一章已有新接触,本节课来研究多项式的概念可谓水到渠成,体现了数学的结构美

  二、学法引导

  1.教学方法:采用对比法,以训练为主,注重尝试指导.

  2.学生学法:观察分析→多项式有关概念→练习巩固

  三、重点、难点、疑点及解决办法

  1.重点:多项式的概念及单项式的联系与区别.

  2.难点:多项式的次数的确定,以及多项式与单项式的联系与区别.

  3.疑点:多项式中各项的符号问题.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师出示探索性练习,学生分析讨论得出多项式有关概念,教师出示巩固性练习,学生多种形式完成.

  七、教学步骤

  (一)复习引入,创设情境

  师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.

  (出示投影1)

  1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.

  , , ,2, , , ,

  2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.

  学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.

  【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容.

  师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?

  学生活动:同座进行讨论,然后选代表回答.

  师:谁能把1题中不是单项式的式子读出来?(师做相应板书)

  学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.

  (二)探索新知,讲授新课

  师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.

  [板书]3.1整式(多项式)

  学生活动:讨论归纳什么叫多项式.可让学生互相补充.

  教师概括并板书

  [板书]多项式:几个单项式的.和叫多项式.

  师:强调每个单项式的符号问题,使学生引起注意.

  (出示投影2)

  练习:下裂代数式 , , , , , ,

  , , 中,是多项式的有:

  ___________________________________________________________.

  学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.

  【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.

  师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.

  师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.

  [板书]

  学生活动:同桌讨论,, , ,应怎样称谓,然后找学生回答.

  师:给予归纳,并做适当板书:

  [板书]

  学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.

  根据学生回答,师归纳:

  在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 中, 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.

  [板书]

  【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.

  (三)尝试反馈,巩固练习

  (出示投影3)

  1.填空:

  2.填空:

  (1) 是_________次__________项式; 是_________次_________项式; 的常数项是___________.

  (2) 是_________次________项式,最高次数是___________,最高次项的系数是__________,常数项是___________.

  学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.

  【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.

  (四)归纳小结

  师:今天我们学习了《整式》一节中“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.

  归纳:单项式和多项式统称为整式.

  [板书]

  说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做了述板书,使所学知识纳入知识系统.

  巩固练习:

  (出示投影4)

  下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.

  学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏.

  【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.

  (五)变式训练,培养能力

  (出示投影5)

  1.单项式 , , 的和_________,它是__________次__________项式.

  2. 是_______次________项式 是__________次_________项式,它的常数项_________.

  3. 是________次________项式,最高次项是_________,最高次项的系数是_________,常数项是__________.

  4. 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).

  学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.

  师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.

  【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识.

  自编题目练习:

  每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.

  【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.

  师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.

  学生活动:学生边回答师边板书,然后学生讨论是否符合要求.

  【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.

  八、随堂练习

  1.判断题

  (1)-5不是多项式( )

  (2) 是二次二项式( )

  (3) 是二次三项式( )

  (4) 是一次三项式( )

  (5) 的最高次项系数是3( )

  2.填空题

  (1)把上列代数式分别填在相应的括号里

  , , ,0, , ,

  ; ;

  ; ;

  .

  (2)如果代数式 是关于 的三次二项式则 , .

  九、布置作业

  (一)必做题:课本第149页习题3.1A组12.

  (二)选做题:课本第150页习题3.1B组3.

  十、板书设计

  随堂练习答案

  1.√ × × √ ×

  2.(1)单项式 ,多项式 ;

  整式 ;

  二项式 ;

  三次三项式 ;

  (2) , .

  作业答案

  教材P.149中A组12题:(1)三次二项式 (2)二次三项式

  (3)一次二项式 (4)四次三项式

四年级观察日记400字12

  随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。

  1教学目标的制定

  制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。

  2教法学法的制定

  制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。

  3教学重难点的制定

  教学重难点的制定也应结合各层次学生的具体情况而定。

  4教学过程的设计

  4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的.内容。

  4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。

  4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。

  5练习与作业的设计

  教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。

  分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。

四年级观察日记400字13

  教学目的:

  1、使学生学会将正多边形的边长、半径、边心距和中心角 、周长、面积等有关 的计算问题转化为解直角三角形的问题.

  2、通过定理的证明过程培养学生观察能力、推理能力、概括能力;

  3、通过一定量的计算,培养学生正确迅速的运算能力;

  教学重点:

  化正多边形的有关计算为解直角三角形问题定理;正多边形计算图及其应用.

  教学难点:

  正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

  教学过程:

  一、新课引入:

  前几课我们学习了正多边形的定义、概念、性质,今天我们来学习正多边形的有关计算.

  大家知道正多边形在生产和生活中有广泛的应用性,伴随而来的有关正多边形计算问题必然摆在大家的面前,如何解决正多边形的计算问题,正是本堂课研究的课题.

  二、新课讲解:

  哪位同学回答,什么叫正多边形.(安排中下生回答:各边相等,各角相等的多边形.)

  什么是正多形的边心距、半径?(安排中下生回答:正多边形内切圆的半径叫做边心距.正多边形外接圆的半 径叫做正多边形的半径.)

  正多边形的边有什么性质、角有什么性质?(安 排中下生回答:边都相等,角都相等.)

  什么叫正多边形的中心角?(安排中下生回答:正多边形的一边所对正多边形外接圆的圆心角.)

  正n边形的中心角度数如何计算?(安排中下生回答:中心角的度数

  正n边形的一个外角度数如何计算?(安排中下生回答:

  一个外角度

  哪位同学有所发现?(安排举手学生:正n边形的中心角度数=正n边形的一个外角度数.)

  哪位同学记得n边形的内角和公式?(请回忆起来的学生回答).

  哪位同学能根据n边形内角和定理和正n边形的性质给出求正n边形一个内角度数的公式?(安排中下生回答:正n边形每个内角度数

  正n边形的每个内角与它有共同顶点的外角有何数量关 系?(安排中下生回答:互补).

  根据正n边形的每个内角与它有共同顶点的外角的互补关系和正n边形每个外角度数公式,正n边形每个内角度数又可怎样计算?(安排中

  (幻灯展示练习题,学生思考,回答)

  1.正五边形的中心角度数是____ __;每个内角的度数是______;

  2.一个正n边形的一个外角度数是360,则它的边数n=______,每个内角度数 是__ ____;

  3.一个正n边形的一个内角的度数是140,则它的边数n=______,中心角度数是______.

  对于前2题安排中下生回答,对于第3题不仅要回答题目的答案而且要求回答思路.

  解此方程n=9.

  幻灯展示正三角形、正方形、正五边形、正 六边形.如下图,让学生边观察、边回答老师依次提出的问题、边思考.

  1.观察每个图形的半径,分别将它们分割成多少个什么样子的三角形?(安排中下生回答:等腰三角形)

  2.观察每个图形中所得的三角形具有什么关系?为什么?(安排中等生回答:全等,依据( S.S.S)或(S.A.S))

  3.将上述四个图形的观察与思考推而广之,你得出了什么结论?哪位同学说说自己的想法(安排中上生回答:正n边形的n条半径分正n边形为n个全等的等腰三角形.)

  套上幻灯片的复合片:作出各等腰三角形底边上的高,如下图,安排学生观察、思考并回答以下问题:

  1.这些等腰三角形的每一条高都将每个等腰三角形分割为两个直角三角形,这两个直角三角形全等吗?为什么?(安排中下生回答)

  2.这些等腰三角形的高在正多边形中的名称是什么?(安排中下生回答: 边心距)

  3.正n边形的 n条半径、n条边心距将正n边形分割成全等直角三角形的个数是多少?(安排中等生回答:2n个)

  给出定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.

  再套幻灯片的复合片,如图7-140,安排学生观察每个 直角三角形都由正多边形的哪些元素组成 .

  安排中下生回答:直角三角形的斜边是正多边形的半径R、一条直角边是正多边形的边心距.另一直角边是正多边形边长的一半(在此安排中等生回答:为什么?)半径与边心距的 夹角是正多边形一个中心角的一半.(安排中等生回答“为什么?”)

  讲解:由于这个直角三角形融合了正多 边形诸多元素,所以就可将正多边形有关半径、边心距、边长、中心角的计算问题归结为解直角三角形的`问题来解决.

  幻灯给出正多边形抽象的计算图,教师讲解:

  由于正多边形的有关计算都归结为解直角三角形的问题来解决,所以我们只要画出这个 直角三角形就可以了,其余就不画或略画.图中R表示半径,rn表示正n边形的边心距,an表示正n边形的边长,an表示正n边形的中心角.

  提问:对于给定具 体边数的正n边形,你首先可以求出直角三角形

  (教师讲解):直角三角形中一锐角已知,所以只要再给直角三角形的R、rn、an其中一项赋值就可求出其它元素.例如:(幻灯展示题目)

  例1 已知:如下图,正△ABC的边心距r3=2.

  求:R、a3.

  问:要解此题,首先要做什么?(找中等生回答:画出基本计算图)

  最后要做什么工作:(找中上生回答:选择三角函 数)

  解:

  ∵n=3

  又

  完成下列各题:(幻灯展示题目)

  1.已知,正方形ABCD的边长a4=2.

  求:R,r4.

  2.已知:正六边形ABCDEF的半径 R=2,

  求:r6,a6.

  (对于计算正确且较快的学生,让他们自拟试题进行计算,教师重点辅导需要帮助的学生)

  再回到例1,问:你会求这个正三角形的周长P3吗?怎么求?为什么这样求?(安排中等生回答 :边长3,因为正三角形 三边相等).

  再问:你会求这个正三角形的面积S3吗?怎么求?为什么这样求?(安排中 等生回答:直角△AOC的面积6,由定理可知这样的直角三角形的个数是边数的2倍.或者,等腰△ AOB的面积3,由定理可知选择的等腰三角形的个数与边数相同.)

  请同学们分别计算上述二题的周长和面积(计算快而准的学生让其自拟题目再练习)[

  (幻灯给出例2):已知正六边形ABCDEF的半径为R,求这个正六边形的边长a6、周长P6和面积S6.

  (提问):1.首先要作什么?(安排中下生回答:画基本计算图)

  2.然 么?(安排中下生回答:选择三角函数)

  P6=9 R.

  通过上面计算,你得出正六边形的半径与边长有什么数量关系?(安排中下生回答:相等)希望大家记住这个结论:a6=R,因为它不仅有利于计算而且是尺规画正六边形的依据.

  三、课堂小结:

  哪位同学能说一下,这堂课我们都学习了什么知识?(安排中等生归纳)

  1.化正多边形的有关计算为解直角三角形问题定理,2.运用正多

  角计算.

  四、布置作业

四年级观察日记400字14

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的`对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察→分析→推导→计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书: 公式

  师:小学里学过哪些面积公式?

  板书: S = ah

  附图

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

  (二)探索求知,讲授新课

  师:下面利用面积公式进行有关计算

  (出示投影2)

  例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。

  师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

  2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)

  学生口述解题过程,教师予以指正并指出,强调解题的规范性.

  【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

  (出示投影3)

  例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积

  学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

  评讲时注意1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

  2.本题实际上是由圆的面积公式推导出环形面积公式.

  3.进一步强调解题的规范性

  教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

  测试反馈,巩固练习

  (出示投影4)

  1.计算底 ,高 的三角形面积

  2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t

  3.已知圆的半径 , ,求圆的周长C和面积S

  4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。

  (1)求A地到B地所用的时间公式。

  (2)若 千米/时, 千米/时,求从A地到B地所用的时间。

  学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

  【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

  师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

  八、随堂练习

  (一)填空

  1.圆的半径为R,它的面积 ________,周长 _____________

  2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________

  3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________

  (二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?

  九、布置作业

  (一)必做题课本第22页1、2、3第23页B组1

  (二)选做题课本第22页5B组2

  十、板书设计

  附:随堂练习答案

  (一)1。 2。 3。

  (二)

  作业答案

  必做题1。

  2。 3。

  选做题5。

  探究活动

  根据给出的数据推导公式。

四年级观察日记400字15

  一、教材的地位与作用

  《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

  二、教学目标

  (一)知识与技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  (二)数学思考:

  体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

  (三)问题解决:

  初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。

  (四)情感态度:

  培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

  三、教学重点与难点

  教学重点:二元一次方程及其解的概念。

  教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  四、教法与学法分析

  教法:情境教学法、比较教学法、阅读教学法。

  学法:阅读、比较、探究的学习方式。

  五、教学过程

  1.创设情境,引入新课

  从学生熟悉的姚明受伤事件引入。

  师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

  (1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

  (2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?

  设姚明投进了x个两分球,罚进了y个球,可列出方程。

  (3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?

  设易建联投进了x个两分球,y个三分球,可列出方程。

  师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?

  从而揭示课题。

  (设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的`问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)

  2.探索交流,汲取新知

  概念思辨,归纳二元一次方程的特征

  师:那到底什么叫二元一次方程?(学生思考后回答)

  师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)

  师:根据概念,你觉得二元一次方程应具备哪几个特征?

  活动:你自己构造一个二元一次方程。

  快速判断:下列式子中哪些是二元一次方程?

  ①x2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

  (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)

  二元一次方程解的概念

  师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

  师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

  使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)

  二元一次方程解的不唯一性

  对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?

  (设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

  例:已知方程3x+2y=10,

  (1)当x=2时,求所对应的y的值;

  (2)取一个你自己喜欢的数作为x的值,求所对应的y的值;

  (3)用含x的代数式表示y;

  (4)用含y的代数式表示x;

  (5)当x=负2,0时,所对应的y的值是多少?

  (6)写出方程3x+2y=10的三个解.

  (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)

  大显身手:

  课内练习第2题

  梳理知识,课堂升华

  本节课你有收获吗?能和大家说说你的感想吗?3.作业布置

  必做题:书本作业题1、2、3、4。

  选做题:书本作业题5、6。

  设计说明

  本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

  在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,

  此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。

《四年级观察日记400字经典[15篇].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

资深写手 • 1对1服务

文章代写服务

品质保证、原创高效、量身定制满足您的需求

点击体验

【四年级观察日记400字】相关文章:

观察日记 观察日记06-03

连续观察日记 连续观察日记 四年级05-17

蜘蛛观察日记 蜘蛛观察日记四年级作文03-30

观察日记观察黄豆日记05-17

观察日记格式 观察日记格式怎么写四年级03-30

植物生长观察日记 植物生长观察日记四年级04-01

观察日落的日记 观察日落的日记04-02

吊兰观察日记 吊兰的观察日记03-31

观察日记动物 观察小狗的日记04-01

观察动物观察日记11-13

论文-AI自动生成器

万字论文 一键生成

输入题目 一键搞定毕业范文模板
AI原创 低重复率 附赠査重报告

点击生成
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

文章代写服务

资深写手 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

四年级观察日记400字经典[15篇]

  忙碌而充实的一天结束了,这一天里,大家身边一定有一些有趣的见闻吧,让我们一起认真地写一篇日记吧。那么写日记需要注意哪些问题呢?以下是小编为大家收集的四年级观察日记400字,希望对大家有所帮助。

四年级观察日记400字经典[15篇]

四年级观察日记400字1

  教学目标

  (一)教学知识点

  1.命题的组成:条件和结论。 2。命题的真假 。 3。了解数学史。

  (二)能力训练要求

  1.能够分清命题的题设和结论。会把命题改写成“如果……,那么……”的形式;能 判断命题的真假。

  2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法。

  3.通过对欧几里得《原本》 的介绍,感受几何的演绎体系对数学发展和人类文明的价值。

  (三)情感与价值观要求

  1.通过举反例的方法来 判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体。

  2.通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣。

  教学重点

  找出命题的条件(题设)和结论。

  教学 难点

  找出命题的条件和结论。

  教学过程

  Ⅰ.巧设现实情境,引入课题

  上节课我们研究了命题,那么什么叫命题呢?

  下面大家来 想一想:

  观察下列命题,你能发现这些命题有什么共同的结构特征?

  (1)如果两个三角形的三条边对应相等,那么这两个三角形全等。

  (2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

  (3)如果一个三角形是 等腰三角形,那 么这个三角形的两个底角相等。

  (4)如果一个四边形的对角线相等,那么这个四边形是矩形。

  (5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形。

  学生分组讨论。

  ①这五个命题都是用“如果……,那么……”的 形 式叙述的。

  ②每个命题都 是由已知得到结论。

  ③这五个命题的每个命题都有条件和结论。

  Ⅱ.讲授新课

  1 .命题的组成:每个命题都有条件和结论两部分组成。

  条件是已知的事项,结论是由已知事项推断 出的事项。

  2.举例说明 命题如何写成“如果……,那么……”的形式

  ①明显的。

  ②不明显的。

  做一做

  1.下列各命题的条件是什么?结论是 什么?

  (1)如果两个角相等,那么它们是对顶角;

  (2)如果a>b,b>c,那么a=c;

  (3)两角和其中一角的对边对应 相等的两个三角形全等;

  (4)菱形的四条边都 相等;

  (5)全等三角形的面积相等。

  2.上述命题中哪 些是正确的?哪些是不正确的.?你怎么知道它们是不正确的?

  3.真命题和假命题

  我们把正确的命题称为真命题(tru e statement),不正确的命题称为假命题(false statement)。

  思考:如何证实一个命题是真命题呢?

  4.我们这套教材有如下命题作为公理:

  1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

  2.两条平行线被第三条直线所 截,同位角相等。

  3.两边及其夹角对应相等的两个三角形全等。

  4.两角及其夹边对应相等的两个三角形全 等。

  5.三边对应相等的两个 三角形全等。

  6.全等三角形的对应边相等,对应角相等。

  Ⅲ.课堂练习

  Ⅳ.课时小结

  本节课我们主要研究了命题的组成及真假。知道任何一个命题都是由条件和结论两部分组成。命题分为真命题和 假命题。

  在辨别真假命题时。注意:假命题只需举一个反例即可。而真命题除公理和性质外,必须通过推理得证。

  Ⅴ.课后作业

  2.预习提纲

  (1)平行线的判定方法的证明

  (2)如何进行推理

四年级观察日记400字2

  【教学目标】

  1进一步认识方程及其解的概念。

  2理解一元一次方程的概念,会根据简单数量关系列一元一次方程。 3体验用尝试、检验解一元一次方程的思想与方法。

  【教学重点】

  一元一次方程的概念和解法贯穿整章,因此“一元一次方程的概念”与“尝试检验法”求解是本节教学的重点。

  【教学难点】

  用尝试、检验的方法解一元一次方程的过程比较复杂,是本节教学的难点。

  【学习准备】

  1.下面哪些式子是方程?

  (1)3

  (2)1;

  (2)x31;

  (3)3x5;

  (4)2xy4;

  (5)x31;

  (6)3x14.

  2.方程与等式有什么联系与区别?

  方程是解决实际问题的一个重要数学模型,需要我们进一步学习研究。

  【课本导学】

  思考一阅读并解答课本第114页“合作学习”的三个问题,思考:

  1.列方程就是根据问题中的相等关系,写出含有未知数的等式。

  (1)原价为50元的衣服,按8折销售,售价是多少元?原价若为x元呢?

  (2)你能举例说明你对“物体在水下,水深每增加10米,物体承受的压力就增加

  (3)张明投进x个,那么“小杰投进的球的个数”可以怎样表示?“3人一共投进的球数”怎样表示?

  你是怎么理解“三人平均每人投进14个球”这句话的?

  思考二观察你所列的方程,这些方程之间有哪些共同的特点?请思考:

  1.你可以从哪些角度对这些方程进行观察呢?说说你的想法。

  2.具有“合作学习”中所列方程一样特点的方程叫做一元一次方程,你能说说这个名称中“元”和“次”的含义吗?[练习]完成课本第115页课内练习

  1.『归纳』判断一个方程是不是一元一次方程应抓住哪几个关键特点?

  思考三阅读课本第114页倒数3行至第115页正文结束,并思考下面的问题:

  1.(1)如果一个数是方程有什么关系?

  (2)如果一个数是方程350应该是多少?

  (3)要判断一个数是不是方程3m?2?1?m的解,你会怎么做?2.对方程2x12

  14的解,这个数代入方程的左边计算得到的值与14 3 1

  x500的解,这个数代入方程的左边计算得到的值10 2x12

  14进行尝试求解时,你认为x必须是整数吗

  x可以取21吗20呢?x可以取10或者比10还小的值吗?为什么?说说你的想法。

  [练习]完成课本第115页课内练习

  2.『归纳』1.检验一个数是不是一元一次方程的解的步骤有哪些?

  2.用尝试检验的方法解一元一次方程,你觉得关键的步骤有哪些?【盘点收获】

  【学习检测】

  1.下列说法正确的是()

  (a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程

  2.下列式子中,属于一元一次方程的'是()(a)5x 1

  (b)ab8(c)1257(d)5x82x9 3

  3.设某数为x,根据下列条件列出求该数的方程:

  (1)某数加上1,再乘以2,得6.

  (2)某数与7的和的2倍等于10.

  (3)某数的5倍比某数小3.

  4.某校初一年级328名师生乘车外出春游,己有2辆校车可乘坐64人,还需租用44座的客车多少辆?

  设还需租用x辆,则可列出方程44x+64=328.

  (1)写出一个方程,使它的解是

  2.【作业布置】略

  【课后反思】

  课堂教学总是在“预设”与“生成”间交融进行,如何根据学情做好充分的预设,又根据课堂生成灵活应变,这既能反映教师的专业素养,又能展示教师的教学功底.反刍本课,笔者认为还有以下几方面值得反思与改进:

  1.忽略课堂“火花”,错失追问良机

  在交流对方程的共同特征探讨的环节,有一个同学直接说出了“一元一次方程”的名称.【片断实录】

  师:讨论好了吧.哪个小组先来说说你们所归纳的特点.生8:这些等式都含有未知数的,用x或y来表示.师(板书):嗯,都含有未知数,这个未知数呢,有的地方是x,有的地方是y.还有呢?生8:还有黑板上的所有等式都是一元一次方程.

  师(惊喜):嗯,你都知道了所有的等式都是我们今天接下来要具体研究的一元一次方程,这位同学已经预习了呢.我们看,刚才这位同学归纳了:都含有未知数.那么请同学们看得更仔细一点,未知数在这里具有什么特征呢?

  不难看出,笔者在这里没有很好地抓住学生的课堂即时生成资源,用一句“嗯,……,这位同学已经预习了呢.”轻轻带过,仍然拉着学生回到了预设的轨道“……,请同学们看得更仔细一点,未知数在这里具有什么特征呢?”如果当时直接问她“那么请你讲讲什

四年级观察日记400字3

  一、 教学目标

  (一)。使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  (二)。培养学生观察能力,提高他们分析问题和解决问题的能力;

  3。使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  我们可以直接看出像4x=24,x+1=3这样简单方程的解,但是仅仅依靠观察来解决比较复杂的方程是很困难的 ,因此,我们还要讨论怎么样解方程,方程是含有未知数的等式,为了讨论方程,我们先来看看等式有什么性质。

  像m+n=n+m,x+2x=3x,3x+!=5y这样的式子都是等式。

  由教科书中天平的图形,由它可以发现什么规律?

  我们可发现,如果在平衡的天平两边都加(或减)同样的量,天平还保持平衡。

  等式就像平衡的天平,它具有与上面的事实同样的'性质。

  由此,我们得出等式的性质1

  等式两边加(或减)同一个数(或式子),结果仍相等。

  用字母表示:a=b,那么a±c=b±c

  等式的性质2

  等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  用字母表示:

  如果a=b,那么ac=bc

  如果 a=b,(c≠0),那么 =

  通过例题来对等式的性质进行巩固。

  例:利用等式的性质解下列方程。

  (1)x+7=26; (2)—5x=20; (3)— x—5=4

  分析:要使方程x+7=26转化为x=a(常数)的形式,要去掉方程左边的7,因此两边要减7,另外两个方程如何转化为x=a的形式。

  解:(1)两边减7,得

  x+7—7=26—7

  于是

  x=19

  (2)两边同时除以—5,得

  =

  于是

  x=—4

  (3)两边加5,得

  —

  化简,得

  两边同乘—3,得

  x=—27

  一般地,从方程解出未知数的值以后,可以带如原方程检验,看这个值能否使方程的两边相等。

  让学生检验上题是否正确。

  (四)课堂练习

  利用等式的性质解下列方程并检验。

  (1)x—5=2; (2)0。3x=45; (3)2— x=3; (4)5x+4=0

  教师引导学生做,做好师生互动。

  四、课后总结

  1。本节课学习了哪些内容?

  2。利用等式的性质解方程方法和步骤是什么?

  3。在运用上述方法和步骤时应注意什么?

  五、作业布置;

  习题3。1,3,4,5题

四年级观察日记400字4

  [教学目标]

  1. 认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位

  2. 渗透对应关系,提高学生的数感.

  [教学重点与难点]

  重点:平面直角坐标系和点的坐标.

  难点:正确画坐标和找对应点.

  [教学设计]

  [设计说明]

  一.利用已有知识,引入

  1.如图,怎样说明数轴上点A和点B的位置,

  2.根据下图,你能正确说出各个象棋子的位置吗?

  二.明确概念

  平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

  由数轴的表示引入,到两个数轴和有序数对。

  从学生熟悉的物品入手,引申到平面直角坐标系。

  描述平面直角坐标系特征和画法

  正方向;两个坐标轴的`交点为平面直角坐标系的原点。

  点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

  例1 写出图中A、B、C、D点的坐标。

  建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

  你能说出例1中各点在第几象限吗?

  例2 在平面直角坐标系中描出下列各点。

  ()A(3,4);B(-1,2);C(-3,-2);D(2,-2)

  问题1:各象限点的坐标有什么特征?

  练习:教材49页:练习1,2。

  三.深入探索

  教材48页:探索:

  识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

  [巩固练习]

  1. 教材49页习题6.1——第1题

  2. 教材50页——第2,4,5,6。

  [小结]

  1. 平面直角坐标系;

  2. 点的坐标及其表示

  3. 各象限内点的坐标的特征

  4. 坐标的简单应用

  [作业]

  必做题:教科书50页:3题

  (教材51页综合运用7,8,9,10为练习课内容)

  明确点的坐标的表示法

  仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系

  通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征

四年级观察日记400字5

  一、教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  二、重点、难点

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  三、教学过程

  (一)复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得1.2x=6。

  因为1.2×5=6,所以小红能买到5本笔记本。

  (二)新授

  问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)。

  列方程:设需要租用x辆客车,可得解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的.年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)。

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  四、巩固练习

  教科书习题

  五、小结

  本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

四年级观察日记400字6

  教学目标

  1.经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下的影子。

  2.会用观察、想像,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

  3. 了解平行投影与物体三种视图之间的.关系。

  教学重点 探讨物体在太阳光下所形成的影子的大小、形状、 方向等。

  教学难点 平行投影与物体三种 视图之间的关系的理解。

  教学方法 观察实践法

  教学后记

  教学内容及过程备注

  一、创设情境、实例导入

  引言:影子是我们司空见惯的,但你知道其中的奥 妙吗?

  概念:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。

  二、操作感知、建立表象

  实践:取若干长短 不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。

  提问:如果改变小棒或纸片 的位置和方向,它们的影子发生了什么变化?

  概念:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

  议一议

  提出问题:1.在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由 。

  2.在同一时刻,大树和小树的影子与它们的高度之间有什么关系 ?与同伴交流。

  学生观察、交流。

  做一做

  某校墙边有甲、乙两根木杆。

  (1)某一时刻甲木杆在阳光下的影子如图4-12所示,你能画出此时乙木杆的影子吗?(用线段表示影子)

  在图4-12中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?

  (3)在你所画的图形中有相似三角形吗?为什么?

  学生画图、实验、观察、探索。

  议一议

  小亮认为,物 体的主视图实际上就是说物体在某一平行光线下的投影(如图4-13),左视图和俯视图也是如此, 你同意这种看 法吗?先想一想,再 与同伴交流。

  学生观察、理解、交流。

  三、随堂练习

  课本随堂练习

  学生观察、画图、合作交流。。

  四、课堂总结

  本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不同时刻影子的 方 向和大小变化特征。

  五、布置作业

  课本习题4.3 1、2、3 试一试

四年级观察日记400字7

  教材分析

  1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

  2.书中的定义是以未知数的'个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

  3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

  学情分析

  1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

  2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

  3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

  教学目标

  1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

  2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

  教学重点和难点

  1、重点:概念的形成及一般形式。

  2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

四年级观察日记400字8

  一、学生知识状况分析

  八年级学生正处于形象思维过渡的阶段,对观察、猜想、探索性的问题充满好奇。本节课是第四章第九节图形的放大与缩小的第二课时,在上一课时学习了位似图形及相关概念后,学生动手将一些简单图形进行了放大或缩小,已获 得一些相关的知识经验和体验,对位似图形及其性质有一定了解,在此基础上,本节课通过将一个图形放大或缩小,让学生进一步掌握将图形放大或缩小的具体方法。同时,在以往的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的经验,具备了归纳知识的能力。

  二、教学任务分析

  基于学生已经学过相似、位似等有关知识,并能将某一简单图形按一定比例放大或缩小。本节课以将一个图形(箭头)按1:2的比例放大为例,继续学习图形的放大与缩小的知识,通过具有挑战性的内容,促使学生进一步熟练掌握利用位似将一个图形 按比例放大或缩小,近而能初步归纳出位似图形放大或缩小的规律,形成有关技能,发展思维能力。本节课将观察、动手操作等实践活动贯穿于教学活动的始终。同时,有意识地培养学生积极的情感和态 度。为此,本节课的教学目标是:

  1、能熟练准确地利用图形的位似将一个图形放大或缩小;

  2、了解常用的几种图形的放大或缩小的数学依据;

  3、有意识地培养学生学习数学的积极情感,激发学生对图形学习的好奇心,形成多角度、多方法想问题的学习习惯;

  4、进一步培养学生动手操作的良好习惯。

  教学重、难点:

  1、重点:利用位似将一个图形放大或缩小;

  2、难点:比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律

  教学设备:利用计算机制作课件,辅助教学。

  三、教学过程分析

  本节课设计了七个教学环节:第一环节:复习引入;第二环节:例题讲授(课件展示);第三环 节:议 一议;第四环节:想一想;第五环节:巩固练习;第六环节:课堂小结;第七环节:布置作业。

  第一 环节:复习引入

  活动内容:

  提问:1、什么叫做位似图形,它具有什么性质?

  2、如何将画在纸上的一个图片放大,使放大前后对应线段的比为1:2?你有哪些方法?与同伴交流。

  让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正,补充。

  教师说明:除利用前面已经用过的“橡皮筋”,方格纸等方法外,在计算机上,借助一些软件也可以很方便地将一个图形放缩,如有条件,可以试试。

  下面我们继续学习如何将纸上的一个图形放大。(从而引入新课)

  活动目的:

  通过复习,回顾位似图形的相关知识,为新课的进行做好铺垫。

  注意事项:

  复习时间不宜过长,对于“橡皮筋”法和方格纸法只需简单描述即可,此处不必让学生动手操作。

  第二环节:例题讲授

  活动内容:

  课件展示,让学生观察图形(如右图),要求作出一个新图形,使新图形与原图形对应 线段的比为2 :1。

  1、让学生先分组讨论,找出方法,然后说明方法的可行性。(橡皮筋法、方格纸放大 法)教师对于学生找到的方法进行简单的评述,并引入本课的主题:利用位似图形放大(或缩小)图形。注意,此过程对于学过方法的回顾,不必花太多的`时间,学生找出方法即可,因为这两种方法不是本课的重点。

  2、教师讲解作图步骤及方 法(课件展示)。

  3、待课件展示后,教师引导学生小结,利用位似图形放大(或缩小)的作图步骤。

  简记方法:(1)选点;(2)作射线;(3)定对应点;(4)连线

  活动目的:

  用课件展示作图的步骤及过程,不仅能吸引学生的注意力,同时,让学生学会听课,观察,通过仔细观察,掌握利用位似图形放大(或缩小)图形的方法,并能对所学的作图方法进行初步归纳(用自己的语言描述)。

  注意事项:

  用课件展示作图的步骤及过程时,可重复操作,让学生看清楚。在重复操作之前,教师可进行必要的讲解, 以便在第二次课件展示时,学生能加深理解和基本掌握,并进一步归纳出作图的步骤(学生用自己的语言描述即可)。

  第三环节:议一议

  活动内容:

  1、问:对于上面的例题,你还有其他方法吗?[来源:ZXXK]

  提示:如果依次在射线PA、PB、PC、PD、PE、PF、PG上取点A、B、C、D、E、F、G呢?

  2、让学生动手按要求在草稿本上作图,此过程教师巡视学生的操作,并适时给予必要的指导。

  3、将较好的学生作图进行展示,并由学生说明作图的步骤。

  活动目的:

  让学生在活动中能够举一反三,触类旁通、善于发现、勤于探究,形成自主学习的良好学习习惯。

  注意事项:

  这一环节一定要让学生亲自动手,教师要特别关注学生的动手操作过程,对于在作图中出现的问题要及时给予解决。

  第四环节:想一想

  活动内容:

  课件展示:下面的说法对吗?为什么?

  (1)分别在△ABC的边AB、AC上取点D、E,使DE∥BC,那么△ADE是△ABC缩小后的图形。

  (2)分别在△ABC的边AB、AC延长线上取点D、E,使DE∥BC,那么△ADE是△ABC放大后的图形。

  (3)分别在△ABC的边AB、AC反向延长线上取点D、E,使DE∥BC,那么△ADE是△ABC放大后的图形。

  1、让学生在练习本上根据题意,画出草图,进行判断,同时说明理由。

  2、教师在学生回答各小题的同时,利用课件同步展示,进行集体讲解、交流。

  活动目的:

  通过具体的题目,继续引导学生关注线段的平行与三角形相似的位置关系;同时,通过练习,让学生学会分析问题、解决问题,同时巩固加深了学生 对本节知识的理解和掌握。

  注意事项:

  教学过程中,要给学生充足的时间进行思考,得出结论后,再进行集体交流和课件展示。

  第五环节:巩固练习

  活动内容:

  三角形的顶点坐标分别是A(2,2),B(4,2),C(6,4),试将△ABC缩小,使缩小后的△DEF与△ABC对应边的比为1:2。

  过程:先让学生思考,完成练习后,再用课件展示图例,讲解方法。

  活动目的:

  对本节知识进行巩固练习,以达到熟练掌握的目的。

  注意事项:

  教师进行巡视,关注学生的做题过程和效果,及时发现学生解题过程中存在的问题,并给予必要的帮助。对于普遍性的问题,应做集体讲解。如果学生使用别的方法,只要合理就应予以肯定。

  第六环节:课堂小结

  活动内容:

  (课件展示)问题:1、位似图形、位似中心、位似比的定义?

  2、位似图形的性质。

  3、位似图形的作法。

  活动目的:

  通过复习,让学生学会把知识系统化,加深对知识的理解和掌握,同时,培养学生有条理的进行思考。

  注意事项:

  小结的三个问题,应由学生思考后作出回答,相互补充,教师切不可代办。

  [来源:]

  第七环节:布置作业

  活动内容:

  1、教材P140页 习题4.13 1、 2

  2、试用几何画板将一个图形放大或缩小。

  活动目的:

  让学生在练习的过程中加深对本课知识的理解和掌握,作业2是为了让学有余力的同学能勇于探索,拓展知识。

  四、教学反思

  本节课,通过复习,再接着上新课,不仅学习了新的知识,同时,更进一步加深了对已学知识的理解和掌握。

  整堂课,采取学生观察、思考、动手作图等方式,真正体现了学生是课堂的主体,而教师的讲解及适时引导、点拨,促使学习过程有效的开展。其中展示学生的优秀作品,培养了学生 的成就感,增强了学生学好数学的信心。“想一想”环节,让学生动手操作,根据自己的理解,作出判断,培养学生主动学习的意识。

  通过本节课, 学生掌握了位似图形的画 法,积累了有关数学活动经验,并在这处过程中,通过独立思考,自主探索和合作交流,理解了位似图形的数学内涵,形成有关技能,发展了思维能力。

  采用多媒体教学已经成为教师的重要教学手段。运用多媒体教学,通过对感官的刺激获取的信息量,比单一的听老师讲课强得多。利用多媒多调动学生的学习兴趣,使学生主动学习,多媒体恰当的演示,使学生对所学知识产生了好奇心,激起了他们探索知识的欲望,最终达到提高课堂教学质量的目的。

四年级观察日记400字9

  教学目标

  ①感受生活中幂的运算的存在与价值.

  ②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.

  ③逐步形成独立思考、主动探索的习惯.

  ④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.

  教学重点与难点

  重点:幂的三个运算性质.

  难点:幂的三个运算性质.

  教学设计

  创设情境导入新课

  问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?

  从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的',学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习.

  学生略作思考后得出,它工作103s可以进行的运算次数是1012×103.怎样计算1012×103?

  根据乘方的意义可以知道:

  探究新知1.探一探根据乘方的意义填空:

  从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.

  学生独立思考后回答,教师板演.

  2.猜一猜

  问:看看计算结果,你能发现结果有什么规律吗?

  学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.

  3.说一说

  am×an(m,n是正整数)?学生说出理由,教师板演共同得出结论:am×an=am+n(m,n都是正整数)

  即同底数幂相乘,底数不变,指数相加.

  注意性质中的m、n的取值范围.

  注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能力是有益的.

  4.想一想

  am×an×ap=?

  5.做一做

  例1教科书第142页的例1(1)~(4)

  (5)—a3a5;

  (6)(x+1)2(x+1)3

  同底数幂的性质很容易推广到三个以上的同底数幂相乘.

  在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“—a3”的底数是“a”还是“—a”.性质中的字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.

  6.自主学习

  根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.

  7.做一做

  例2教科书第171页的例2(1)~(4)

  (5) —(x3)4x2

  8.想一想

  让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么规律?

  学生自己归纳出积的乘方的运算性质:(ab)n=anbn(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

  那么,(abc)n=?

  注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.

  9.做一做

  例3教科书第172页的例3(1)~(4);补充:(5) [—3(x+y)2]3

  例4 计算:x(x2)3—2x4x2

  比一比

  这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.

  深入探究例5计算:(1)(—8)20xx(—0。125)20xx(2)(—2)2n+1+2(—2)2n(n为正整数).

  在这三个性质中的底数、指数中,指数注明为正整数,而底数可以是数、字母或式.把底数进一步扩充到式的范围.

  议一议

  下面的计算对不对?如果不对,应当怎样改正.

  (1)a3a3=a6; (2)b4b4=2b4;

  (3)x5+x5=x10; (4)y7y=y8;

  (5)(a3)5=a8; (6)a3a5=a15;

  (7)(a2)3a4=a9; (8)(xy3)2=xy6;

  (9)(—2x)3=—2x3

  注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.

  小结

  组织学生讨论和辨析三个运算性质.

  课外巩固

  1.必做题:教科书第148页习题15。1第1、2题.

  2.备选题:

  (1)计算:

  (2)计算:am—1an+2+am+2an—1+aman+1

  (3)已知:am=7,bm=4,则(ab)2m=______

  (4)已知:3x+2y—3=0,则27x9y=___________

四年级观察日记400字10

  一、教学案例的特点

  1、案例与论文的区别

  从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

  从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

  2、案例与教案、教学设计的区别

  教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

  3、案例与教学实录的区别

  案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

  4、教学案例的特点是

  ——真实性:案例必须是在课堂教学中真实发生的事件;

  ——典型性:必须是包括特殊情境和典型案例问题的故事;

  ——浓缩性:必须多角度地呈现问题,提供足够的信息;

  ——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

  二、数学案例的结构要素

  从文章结构上看,数学案例一般包含以下几个基本的元素。

  (1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的.原因或条件。

  (2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

  (3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

  (4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

  (5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

  三、初中数学教学案例主题的选择

  新课程理念下的初中数学教学案例,可从以下六方面选择主题:

  (1)体现让学生动手实践、自主探究、合作交流的教学方式;

  (2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

  (3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;

  (4)体现数学与信息技术整合的教学方法;

  (5)体现教师在教学过程中的组织者、引导者与合作者的作用;

  (6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

四年级观察日记400字11

  一、素质教育目标

  (一)知识教学点

  1.使学生理解多项式的概念.

  2.使学生能准确地确定一个多项式的次数和项数.

  3.能正确区分单项式和多项式.

  (二)能力训练点

  通过区别单项式与多项式,培养学生发散思维.

  (三)德育渗透点

  在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.

  (四)美育渗透点

  单项式和多项式在前二章,特别是第一章已有新接触,本节课来研究多项式的概念可谓水到渠成,体现了数学的结构美

  二、学法引导

  1.教学方法:采用对比法,以训练为主,注重尝试指导.

  2.学生学法:观察分析→多项式有关概念→练习巩固

  三、重点、难点、疑点及解决办法

  1.重点:多项式的概念及单项式的联系与区别.

  2.难点:多项式的次数的确定,以及多项式与单项式的联系与区别.

  3.疑点:多项式中各项的符号问题.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师出示探索性练习,学生分析讨论得出多项式有关概念,教师出示巩固性练习,学生多种形式完成.

  七、教学步骤

  (一)复习引入,创设情境

  师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.

  (出示投影1)

  1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.

  , , ,2, , , ,

  2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.

  学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.

  【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容.

  师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?

  学生活动:同座进行讨论,然后选代表回答.

  师:谁能把1题中不是单项式的式子读出来?(师做相应板书)

  学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.

  (二)探索新知,讲授新课

  师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.

  [板书]3.1整式(多项式)

  学生活动:讨论归纳什么叫多项式.可让学生互相补充.

  教师概括并板书

  [板书]多项式:几个单项式的.和叫多项式.

  师:强调每个单项式的符号问题,使学生引起注意.

  (出示投影2)

  练习:下裂代数式 , , , , , ,

  , , 中,是多项式的有:

  ___________________________________________________________.

  学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.

  【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.

  师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.

  师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.

  [板书]

  学生活动:同桌讨论,, , ,应怎样称谓,然后找学生回答.

  师:给予归纳,并做适当板书:

  [板书]

  学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.

  根据学生回答,师归纳:

  在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 中, 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.

  [板书]

  【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.

  (三)尝试反馈,巩固练习

  (出示投影3)

  1.填空:

  2.填空:

  (1) 是_________次__________项式; 是_________次_________项式; 的常数项是___________.

  (2) 是_________次________项式,最高次数是___________,最高次项的系数是__________,常数项是___________.

  学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.

  【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.

  (四)归纳小结

  师:今天我们学习了《整式》一节中“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.

  归纳:单项式和多项式统称为整式.

  [板书]

  说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做了述板书,使所学知识纳入知识系统.

  巩固练习:

  (出示投影4)

  下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.

  学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏.

  【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.

  (五)变式训练,培养能力

  (出示投影5)

  1.单项式 , , 的和_________,它是__________次__________项式.

  2. 是_______次________项式 是__________次_________项式,它的常数项_________.

  3. 是________次________项式,最高次项是_________,最高次项的系数是_________,常数项是__________.

  4. 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).

  学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.

  师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.

  【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识.

  自编题目练习:

  每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.

  【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.

  师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.

  学生活动:学生边回答师边板书,然后学生讨论是否符合要求.

  【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.

  八、随堂练习

  1.判断题

  (1)-5不是多项式( )

  (2) 是二次二项式( )

  (3) 是二次三项式( )

  (4) 是一次三项式( )

  (5) 的最高次项系数是3( )

  2.填空题

  (1)把上列代数式分别填在相应的括号里

  , , ,0, , ,

  ; ;

  ; ;

  .

  (2)如果代数式 是关于 的三次二项式则 , .

  九、布置作业

  (一)必做题:课本第149页习题3.1A组12.

  (二)选做题:课本第150页习题3.1B组3.

  十、板书设计

  随堂练习答案

  1.√ × × √ ×

  2.(1)单项式 ,多项式 ;

  整式 ;

  二项式 ;

  三次三项式 ;

  (2) , .

  作业答案

  教材P.149中A组12题:(1)三次二项式 (2)二次三项式

  (3)一次二项式 (4)四次三项式

四年级观察日记400字12

  随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。

  1教学目标的制定

  制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。

  2教法学法的制定

  制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。

  3教学重难点的制定

  教学重难点的制定也应结合各层次学生的具体情况而定。

  4教学过程的设计

  4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的.内容。

  4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。

  4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。

  5练习与作业的设计

  教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。

  分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。

四年级观察日记400字13

  教学目的:

  1、使学生学会将正多边形的边长、半径、边心距和中心角 、周长、面积等有关 的计算问题转化为解直角三角形的问题.

  2、通过定理的证明过程培养学生观察能力、推理能力、概括能力;

  3、通过一定量的计算,培养学生正确迅速的运算能力;

  教学重点:

  化正多边形的有关计算为解直角三角形问题定理;正多边形计算图及其应用.

  教学难点:

  正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

  教学过程:

  一、新课引入:

  前几课我们学习了正多边形的定义、概念、性质,今天我们来学习正多边形的有关计算.

  大家知道正多边形在生产和生活中有广泛的应用性,伴随而来的有关正多边形计算问题必然摆在大家的面前,如何解决正多边形的计算问题,正是本堂课研究的课题.

  二、新课讲解:

  哪位同学回答,什么叫正多边形.(安排中下生回答:各边相等,各角相等的多边形.)

  什么是正多形的边心距、半径?(安排中下生回答:正多边形内切圆的半径叫做边心距.正多边形外接圆的半 径叫做正多边形的半径.)

  正多边形的边有什么性质、角有什么性质?(安 排中下生回答:边都相等,角都相等.)

  什么叫正多边形的中心角?(安排中下生回答:正多边形的一边所对正多边形外接圆的圆心角.)

  正n边形的中心角度数如何计算?(安排中下生回答:中心角的度数

  正n边形的一个外角度数如何计算?(安排中下生回答:

  一个外角度

  哪位同学有所发现?(安排举手学生:正n边形的中心角度数=正n边形的一个外角度数.)

  哪位同学记得n边形的内角和公式?(请回忆起来的学生回答).

  哪位同学能根据n边形内角和定理和正n边形的性质给出求正n边形一个内角度数的公式?(安排中下生回答:正n边形每个内角度数

  正n边形的每个内角与它有共同顶点的外角有何数量关 系?(安排中下生回答:互补).

  根据正n边形的每个内角与它有共同顶点的外角的互补关系和正n边形每个外角度数公式,正n边形每个内角度数又可怎样计算?(安排中

  (幻灯展示练习题,学生思考,回答)

  1.正五边形的中心角度数是____ __;每个内角的度数是______;

  2.一个正n边形的一个外角度数是360,则它的边数n=______,每个内角度数 是__ ____;

  3.一个正n边形的一个内角的度数是140,则它的边数n=______,中心角度数是______.

  对于前2题安排中下生回答,对于第3题不仅要回答题目的答案而且要求回答思路.

  解此方程n=9.

  幻灯展示正三角形、正方形、正五边形、正 六边形.如下图,让学生边观察、边回答老师依次提出的问题、边思考.

  1.观察每个图形的半径,分别将它们分割成多少个什么样子的三角形?(安排中下生回答:等腰三角形)

  2.观察每个图形中所得的三角形具有什么关系?为什么?(安排中等生回答:全等,依据( S.S.S)或(S.A.S))

  3.将上述四个图形的观察与思考推而广之,你得出了什么结论?哪位同学说说自己的想法(安排中上生回答:正n边形的n条半径分正n边形为n个全等的等腰三角形.)

  套上幻灯片的复合片:作出各等腰三角形底边上的高,如下图,安排学生观察、思考并回答以下问题:

  1.这些等腰三角形的每一条高都将每个等腰三角形分割为两个直角三角形,这两个直角三角形全等吗?为什么?(安排中下生回答)

  2.这些等腰三角形的高在正多边形中的名称是什么?(安排中下生回答: 边心距)

  3.正n边形的 n条半径、n条边心距将正n边形分割成全等直角三角形的个数是多少?(安排中等生回答:2n个)

  给出定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.

  再套幻灯片的复合片,如图7-140,安排学生观察每个 直角三角形都由正多边形的哪些元素组成 .

  安排中下生回答:直角三角形的斜边是正多边形的半径R、一条直角边是正多边形的边心距.另一直角边是正多边形边长的一半(在此安排中等生回答:为什么?)半径与边心距的 夹角是正多边形一个中心角的一半.(安排中等生回答“为什么?”)

  讲解:由于这个直角三角形融合了正多 边形诸多元素,所以就可将正多边形有关半径、边心距、边长、中心角的计算问题归结为解直角三角形的`问题来解决.

  幻灯给出正多边形抽象的计算图,教师讲解:

  由于正多边形的有关计算都归结为解直角三角形的问题来解决,所以我们只要画出这个 直角三角形就可以了,其余就不画或略画.图中R表示半径,rn表示正n边形的边心距,an表示正n边形的边长,an表示正n边形的中心角.

  提问:对于给定具 体边数的正n边形,你首先可以求出直角三角形

  (教师讲解):直角三角形中一锐角已知,所以只要再给直角三角形的R、rn、an其中一项赋值就可求出其它元素.例如:(幻灯展示题目)

  例1 已知:如下图,正△ABC的边心距r3=2.

  求:R、a3.

  问:要解此题,首先要做什么?(找中等生回答:画出基本计算图)

  最后要做什么工作:(找中上生回答:选择三角函 数)

  解:

  ∵n=3

  又

  完成下列各题:(幻灯展示题目)

  1.已知,正方形ABCD的边长a4=2.

  求:R,r4.

  2.已知:正六边形ABCDEF的半径 R=2,

  求:r6,a6.

  (对于计算正确且较快的学生,让他们自拟试题进行计算,教师重点辅导需要帮助的学生)

  再回到例1,问:你会求这个正三角形的周长P3吗?怎么求?为什么这样求?(安排中等生回答 :边长3,因为正三角形 三边相等).

  再问:你会求这个正三角形的面积S3吗?怎么求?为什么这样求?(安排中 等生回答:直角△AOC的面积6,由定理可知这样的直角三角形的个数是边数的2倍.或者,等腰△ AOB的面积3,由定理可知选择的等腰三角形的个数与边数相同.)

  请同学们分别计算上述二题的周长和面积(计算快而准的学生让其自拟题目再练习)[

  (幻灯给出例2):已知正六边形ABCDEF的半径为R,求这个正六边形的边长a6、周长P6和面积S6.

  (提问):1.首先要作什么?(安排中下生回答:画基本计算图)

  2.然 么?(安排中下生回答:选择三角函数)

  P6=9 R.

  通过上面计算,你得出正六边形的半径与边长有什么数量关系?(安排中下生回答:相等)希望大家记住这个结论:a6=R,因为它不仅有利于计算而且是尺规画正六边形的依据.

  三、课堂小结:

  哪位同学能说一下,这堂课我们都学习了什么知识?(安排中等生归纳)

  1.化正多边形的有关计算为解直角三角形问题定理,2.运用正多

  角计算.

  四、布置作业

四年级观察日记400字14

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的`对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察→分析→推导→计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书: 公式

  师:小学里学过哪些面积公式?

  板书: S = ah

  附图

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

  (二)探索求知,讲授新课

  师:下面利用面积公式进行有关计算

  (出示投影2)

  例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。

  师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

  2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)

  学生口述解题过程,教师予以指正并指出,强调解题的规范性.

  【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

  (出示投影3)

  例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积

  学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

  评讲时注意1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

  2.本题实际上是由圆的面积公式推导出环形面积公式.

  3.进一步强调解题的规范性

  教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

  测试反馈,巩固练习

  (出示投影4)

  1.计算底 ,高 的三角形面积

  2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t

  3.已知圆的半径 , ,求圆的周长C和面积S

  4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。

  (1)求A地到B地所用的时间公式。

  (2)若 千米/时, 千米/时,求从A地到B地所用的时间。

  学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

  【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

  师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

  八、随堂练习

  (一)填空

  1.圆的半径为R,它的面积 ________,周长 _____________

  2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________

  3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________

  (二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?

  九、布置作业

  (一)必做题课本第22页1、2、3第23页B组1

  (二)选做题课本第22页5B组2

  十、板书设计

  附:随堂练习答案

  (一)1。 2。 3。

  (二)

  作业答案

  必做题1。

  2。 3。

  选做题5。

  探究活动

  根据给出的数据推导公式。

四年级观察日记400字15

  一、教材的地位与作用

  《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

  二、教学目标

  (一)知识与技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  (二)数学思考:

  体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

  (三)问题解决:

  初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。

  (四)情感态度:

  培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

  三、教学重点与难点

  教学重点:二元一次方程及其解的概念。

  教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  四、教法与学法分析

  教法:情境教学法、比较教学法、阅读教学法。

  学法:阅读、比较、探究的学习方式。

  五、教学过程

  1.创设情境,引入新课

  从学生熟悉的姚明受伤事件引入。

  师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

  (1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

  (2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?

  设姚明投进了x个两分球,罚进了y个球,可列出方程。

  (3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?

  设易建联投进了x个两分球,y个三分球,可列出方程。

  师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?

  从而揭示课题。

  (设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的`问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)

  2.探索交流,汲取新知

  概念思辨,归纳二元一次方程的特征

  师:那到底什么叫二元一次方程?(学生思考后回答)

  师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)

  师:根据概念,你觉得二元一次方程应具备哪几个特征?

  活动:你自己构造一个二元一次方程。

  快速判断:下列式子中哪些是二元一次方程?

  ①x2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

  (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)

  二元一次方程解的概念

  师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

  师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

  使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)

  二元一次方程解的不唯一性

  对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?

  (设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

  例:已知方程3x+2y=10,

  (1)当x=2时,求所对应的y的值;

  (2)取一个你自己喜欢的数作为x的值,求所对应的y的值;

  (3)用含x的代数式表示y;

  (4)用含y的代数式表示x;

  (5)当x=负2,0时,所对应的y的值是多少?

  (6)写出方程3x+2y=10的三个解.

  (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)

  大显身手:

  课内练习第2题

  梳理知识,课堂升华

  本节课你有收获吗?能和大家说说你的感想吗?3.作业布置

  必做题:书本作业题1、2、3、4。

  选做题:书本作业题5、6。

  设计说明

  本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

  在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,

  此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。